. 24/7 Space News .
Chip-sized device could help manufacturers measure laser power in real time
by Staff Writers
Washington DC (SPX) Sep 27, 2018

A prototype of the smart mirror. Laser light bounces off the highly reflective surface of a silicon plate, visible in the middle of a thick black ring of plastic.

Lasers play roles in many manufacturing processes, from welding car parts to crafting engine components with 3D printers.* To control these tasks, manufacturers must ensure that their lasers fire at the correct power.

But to date, there has been no way to precisely measure laser power during the manufacturing process in real time, while lasers are cutting or melting objects, for example. Without this information, some manufacturers may have to spend more time and money assessing whether their parts meet manufacturing specifications after production.

To address this need, researchers from the National Institute of Standards and Technology (NIST) have been developing a laser power sensor that could be built into manufacturing devices for real-time measurements. They present the results from their latest prototype in an October 2018 issue of IEEE Sensors.

The new device works in a similar way to a previous sensor made by the team, which uses radiation pressure, or the force that light exerts on an object. But unlike their older device - a shoebox-sized "Radiation Pressure Power Meter (RPPM) for ultrahigh-power lasers of thousands of watts - the chip-sized "smart mirror" is designed for lasers of hundreds of watts, the range typically used for manufacturing processes.

"It's still a radiation-pressure power meter, but it's much smaller and much faster," with 250 times the measurement speed of their larger sensor, said NIST's John Lehman. The smart mirror is also about 40 times more sensitive than the RPPM.

The kinds of manufacturing processes that could potentially use this new technology include everything from airplanes and automobiles to cellphones and medical devices. The smart mirror could also be integrated into machines employed in additive manufacturing, a type of 3D printing that builds an object layer by layer, often using a laser to melt the materials that form the object.

Someday, the researchers say, these tiny meters could be in every additive manufacturing machine and in every laser weld head.

"This would put the high accuracy of NIST power measurements directly in the hands of operators, providing standardized quality assurance across laser-based systems and helping to accelerate the process of part qualification," which ensures that manufactured objects meet engineering specifications, said NIST's Alexandra B. Artusio-Glimpse.

New vs. Old
Conventional techniques for gauging laser power require an apparatus that absorbs all the energy from the beam as heat. Measuring the temperature change allows researchers to calculate the laser's power.

The trouble with this traditional method is that if the measurement requires absorbing all the energy from the laser beam, then manufacturers can't measure the beam while it's actually being used for something.

Radiation pressure solves this problem. Light has no mass, but it does have momentum, which allows it to produce a force when it strikes an object. A 1-kilowatt (kW) laser beam has a small but noticeable force - about the weight of a grain of sand.

By shining a laser beam on a reflective surface, and then measuring how much the surface moves in response to light's pressure, researchers can both measure the laser's force (and, therefore, its power) and also use the light that bounces off the surface directly for manufacturing work.

How It Works
The NIST team's previous RPPM, for multi-kW beams, works by shining the laser onto essentially a laboratory weighing scale, which depresses as the light hits it. But that device is too big to be integrated into welding heads or 3D printers. Researchers also wanted a system that would be more sensitive to the significantly smaller forces used for everyday manufacturing processes.

Instead of employing a laboratory balance, the new "smart mirror" works essentially as a capacitor, a device that stores electric charge. The sensor measures changes in capacitance between two charged plates, each about the size of a half dollar.

The top plate is coated with a highly reflective mirror called a distributed Bragg reflector, which uses alternating layers of silicon and silicon dioxide.** Laser light hitting the top plate imparts a force that causes that plate to move closer to the bottom plate, which changes the capacitance, its ability to store electric charge. The higher the laser power, the greater the force on the top plate.

Laser light in the range used for manufacturing - in the hundreds of watts range - is not powerful enough to move the plate very far. That means that any physical vibrations in the room could cause that top plate to move in a way that wipes out the tiny signal it's designed to measure.

So NIST researchers made their sensor insensitive to vibration. Both the top and bottom plates are attached to the device by springs. Ambient influences, such as vibrations if someone closes a door in the room or walks past the table, cause both plates to move in tandem. But a force that affects only the top plate causes it to move independently.

"If the device gets physically moved or vibrated, both plates move together," Lehman said. "So the net force is strictly the radiation pressure, rather than any ambient influences."

With this technique in place, the sensor can make precise, real-time power measurements for lasers of hundreds of watts, with a background noise level of just 2.5 watts.

"I'm just surprised how well it works. I'm really excited about it," Lehman said. "If you told me two years ago that we'd do this, I'd say 'no way!'"

Right now, the prototype sensor has been tested at a laser power of 250 watts. With further work, that range will likely extend to about 1 kW on the high end and below 1 watt on the low end. Lehman and colleagues are also working to improve the sensitivity and stability of the device.

Research Report: Micromachined force scale for optical power measurement by radiation pressure sensing. IEEE Sensors. Published Oct. 1, 2018. DOI: 10.1109/JSEN.2018.2863607

Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Experiment obtains entanglement of six light waves with a single laser
Sao Paulo, Brazil (SPX) Sep 14, 2018
Austrian physicist Erwin Schrodinger (1887-1961), one of the giants of contemporary science, considered "entanglement" the most interesting property in quantum mechanics. In his view, it was this phenomenon that truly distinguished the quantum world from the classical world. Entanglement occurs when groups of particles or waves are created or interact in such a way that the quantum state of each particle or wave cannot be described independently of the others, however far apart they are. Exp ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NASA Unveils Sustainable Campaign to Return to Moon, on to Mars

US-Russia space cooperation needs continued insulation from politics

Partnership, Teamwork Enable Landmark Science Glovebox Launch to Space Station

Russia May Help India to Launch Country's First Manned Space Mission

DARPA invests in propellant-free rocket theory

Japan firm signs with SpaceX for lunar missions

Brilliant, brash and volatile, Elon Musk faces new challenge

Vector Awarded Patent for Enhanced Liquid Oxygen-Propylene Rocket Engine

Software finds the best way to stick a Mars landing

NASA sees its stalled Martian robot, but still no signals

Martian moon likely forged by ancient impact, study finds

Opportunity Remains Silent For Over Three Months

China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

Ten years catching rocket signals

Thinkom develops enterprise user terminal for Telesat's LEO constellation

The Ocean Cleanup chooses Iridium

SiriusXM buys Pandora to step up streaming music wars

Plasma thruster: New space debris removal technology

Researchers develop magnetic cooling cycle

Commercially relevant bismuth-based thin film processing

Chemists functionalize boron nitride with other nano systems

Plans for European Astrobiology Institute Announced

Bacteria's password for sporulation hasn't changed in over 2 billion years

NASA is taking a new look at searching for life beyond Earth

Cosmologists use photonics to search Andromeda for signs of alien life

New Horizons Team Rehearses For New Year's Flyby

Juno image showcases Jupiter's brown barge

New research suggest Pluto should be reclassified as a planet

Tally Ho Ultima

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.