. | . |
China builds world's first space-ground integrated quantum communication network by Staff Writers Beijing, China (SPX) Oct 02, 2017
The first quantum-safe video conference was held between President Chunli Bai of the Chinese Academy of Sciences in Beijing and President Anton Zeilinger of the Austria Academy of Sciences in Vienna, as the first real-world demonstration of intercontinental quantum communication on September 29th. Private and secure communications are fundamental human needs. In particular, with the exponential growth of Internet use and e-commerce, it is of paramount importance to establish a secure network with global protection of data. Traditional public key cryptography usually relies on the perceived computational intractability of certain mathematical functions. In contrast, quantum key distribution (QKD) uses individual light quanta (single photon) in quantum superposition states to guarantee unconditional security between distant parties. Previously, the quantum communication distance had been limited to a few hundred kilometers, due to the channel loss of fibers or terrestrial free space. A promising solution to this problem is exploiting satellite and space-based link, which can conveniently connect two remote points on the Earth with greatly reduced channel loss because most of the photons' propagation path is in empty space with negligible loss and decoherence. A cross-disciplinary multi-institutional team of scientists from the Chinese Academy of Sciences, led by Professor Jian-Wei Pan, has spent more than ten years in developing a sophisticated satellite, named Micius, dedicated for quantum science experiments (for the project timeline, see Appendix), which was successfully launched on 16th August 2016, from Jiuquan, China, orbiting at an altitude of ~500 km . The satellite is equipped with three payloads: a decoy-state QKD transmitter, an entangled-photon source, and a quantum teleportation receiver and analyzer. Five ground stations are built in China to cooperate with the Micius satellite, located in Xinglong (near Beijing, 40 degrees 23'45.12''N, 117 degrees 34'38.85''E, altitude 890m), Nanshan (near Urumqi, 43 degrees 28'31.66''N, 87 degrees 10'36.07''E, altitude 2028m), Delingha (37 degrees 22'44.43''N, 97 degrees 43'37.01"E, altitude 3153m), Lijiang (26 degrees 41'38.15''N, 100 degrees 1'45.55''E, altitude 3233m), and Ngari in Tibet (32 degrees 19'30.07''N, 80 degrees 1'34.18''E, altitude 5047m). Within a year after the launch, three key milestones that will be central to a global-scale quantum internet have been achieved: satellite-to-ground decoy-state QKD with kHz rate over a distance of ~1200 km (Liao et al. 2017, Nature 549, 43); satellite-based entanglement distribution to two locations on the Earth separated by ~1200 km and Bell test (Yin et al. 2017, Science 356, 1140), and ground-to-satellite quantum teleportation (Ren et al. 2017, Nature 549, 70). The effective link efficiencies in the satellite-based QKD were measured to be ~20 orders of magnitudes larger than direct transmission through optical fibers at the same length at 1200 km. The satellite-based QKD has now been combined with metropolitan quantum networks, in which fibers are used to efficiently and conveniently to connect many users inside a city with a distance scale of ~100 km. For example, the Xinglong station has now been connected to the metropolitan multi-node quantum network in Beijing via optical fibers. Very recently, the largest fiber-based quantum communication backbone has been built in China by Professor Pan's team, linking Beijing to Shanghai (going through Jinan and Hefei, and 32 trustful relays) with a fiber length of 2000 km. The backbone uses decoy-state protocol QKD and achieves an all-pass secure key rate of 20 kbps. It is on trial for real-world applications by government, banks, securities and insurance companies. The Micius satellite can be further exploited as a trustful relay to conveniently connect any two points on the earth for high-security key exchange. Early this year, the Chinese team has implemented satellite-to-ground QKD in Xinglong. After that, the secure keys were stored in the satellite for 2 hours until it reached Nanshan station near Urumqi, by a distance of ~2500 km from Beijing. By performing another QKD between the satellite and Nanshan station, and using one-time-pad encoding, secure key between Xinglong and Nanshan were then established. To test the robustness and versatility of the Micius, QKD from the satellite to Graz ground station near Vienna has also been carried out successfully this June, as a collaboration between Professor Pan and Professor Anton Zeilinger's group. Upon request, future similar experiments are also planned between China and Singapore, Italy, Germany, and Russia.
Washington (UPI) Sep 27, 2017 Leonardo is to define the requirements and processes for the cyber protection of the Galileo satellite navigation program. The program is managed by the European Commission. The European Space Agency is responsible for the system's infrastructure. "Satellite-based assets play a major role in the daily lives of citizens and for national critical infrastructures," said Leonardo Chi ... read more Related Links Chinese Academy of Sciences Headquarters Military Space News at SpaceWar.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |