. 24/7 Space News .
ENERGY TECH
Chemical cluster could transform energy storage for large electrical grids
by Staff Writers
Buffalo NY (SPX) Feb 15, 2018

File image.

To power entire communities with clean energy, such as solar and wind power, a reliable backup storage system is needed to provide energy when the wind isn't blowing and the sun isn't out. One possibility is to use any excess solar- and wind-based energy to charge solutions of chemicals that can subsequently be stored for use when sunshine and wind are scarce. During these down times, chemical solutions of opposite charge can be pumped across solid electrodes, thus creating an electron exchange that provides power to the electrical grid.

The key to this technology, called a redox flow battery, is finding chemicals that can not only "carry" sufficient charge, but also be stored without degrading for long periods, thereby maximizing power generation and minimizing the costs of replenishing the system.

Researchers at the University of Rochester and University at Buffalo believe they have found a promising compound that could transform the energy storage landscape.

In a paper published in Chemical Science, an open access journal of the Royal Society of Chemistry, the researchers describe modifying a metal-oxide cluster, which has promising electroactive properties, so that it is nearly twice as effective as the unmodified cluster for electrochemical energy storage in a redox flow battery.

The research was led by the lab of Ellen Matson, PhD, University of Rochester assistant professor of chemistry. Matson's team partnered with Timothy Cook, PhD, assistant professor of chemistry in the UB College of Arts and Sciences, to develop and study the cluster.

"Energy storage applications with polyoxometalates are pretty rare in the literature. There are maybe one or two examples prior to ours, and they didn't really maximize the potential of these systems," says first author Lauren VanGelder, a third-year PhD student in Matson's lab and a UB graduate who received her BS in chemistry and biomedical sciences.

"This is really an untapped area of molecular development," Matson adds.

The cluster was first developed in the lab of German chemist Johann Spandl, and studied for its magnetic properties. Tests conducted by VanGelder showed that the compound could store charge in a redox flow battery, "but was not as stable as we had hoped."

However, by making what Matson describes as "a simple molecular modification" - replacing the compound's methanol-derived methoxide groups with ethanol-based ethoxide ligands - the team was able to expand the potential window during which the cluster was stable, doubling the amount of electrical energy that could be stored in the battery.

Cook's team - including fourth-year PhD candidate Anjula Kosswattaarachchi - contributed to the research by carrying out tests that enabled the scientists to determine how stable different cluster compounds were.

"We carried out a series of experiments to evaluate the electrochemical properties of the clusters," Cook says.

"Specifically, we were interested in seeing if the clusters were stable over the course of minutes, hours, and days. We also constructed a prototype battery where we charged and discharged the clusters, keeping track of how many electrons we could transfer and seeing if all of the energy we stored could be recovered, as one would expect of a good battery.

"These experiments let us calculate the efficiency of the device in a very exact way, letting us compare one system to another. Because of these studies, we were able to make molecular changes to the cluster and then determine exactly what properties were effected."

Says Matson: "What's really cool about this work is the way we can generate the ethoxide and methoxide clusters by using methanol and ethanol. Both of these reagents are inexpensive, readily available and safe to use. The metal and oxygen atoms that compose the remainder of the cluster are earth-abundant elements. The straightforward, efficient synthesis of this system is a totally new direction in charge-carrier development that, we believe, will set a new standard in the field."

Matson and Cook's research groups have applied for a National Science Foundation grant as part of an ongoing collaboration to further refine the clusters for use in commercial redox flow batteries.

A University of Rochester Furth Fund Award that Matson received last year enabled the lab to purchase electrochemical equipment needed for the study. Patrick Forrestal of the Matson lab also contributed to the study.

Research paper


Related Links
University at Buffalo
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
New lithium collection method could boost global supply
Austin TX (SPX) Feb 15, 2018
With continual technological advancements in mobile devices and electric cars, the global demand for lithium has quickly outpaced the rate at which it can be mined or recycled, but a University of Texas at Austin professor and his research team may have a solution. Benny Freeman, professor in the McKetta Department of Chemical Engineering in the Cockrell School of Engineering, and his colleagues at the Monash University Department of Chemical Engineering and the Commonwealth Scientific and Industr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Russian Resupply Ship Delivers Three Tons of Cargo

NASA's Continued Focus on Returning U.S. Human Spaceflight Launches

NASA Acting Administrator's Statement on FY 2019 Budget Proposal

US wants to privatize International Space Station: report

ENERGY TECH
140 successful tests and several "firsts" for Vinci, the engine for Ariane 6

Russia launches cargo spacecraft after aborted liftoff

Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

ENERGY TECH
Leaky Atmosphere Linked To Lightweight Planet

Mars Opportunity Rover Energy Levels Improve

A Piece of Mars is Going Home

Danish architect envisions life on Mars

ENERGY TECH
Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

ENERGY TECH
Airbus and human spaceflight: from Spacelab to Orion

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

ENERGY TECH
Why bees soared and slime flopped as inspirations for systems engineering

Friction found where there should be none: In superfluids near absolute zero

Last NASA Communications Satellite of its Kind Joins Fleet

Navy turns to Raytheon for aircraft sensor upgrades

ENERGY TECH
Deep-sea fish use hydrothermal vents to incubate eggs

Kepler Scientists Discover Almost 100 New Exoplanets

'Oumuamua has been tumbling about the galaxy for a billion years

UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

ENERGY TECH
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.