. 24/7 Space News .
ICE WORLD
Chain reaction of fast-draining lakes poses new risk for Greenland ice sheet
by Staff Writers
Cambridge UK (SPX) Mar 16, 2018

Melting of Greenland ice sheet forms lakes that drain in summer. Image courtesy Timo Lieber

A growing network of lakes on the Greenland ice sheet has been found to drain in a chain reaction that speeds up the flow of the ice sheet, threatening its stability. Researchers from the UK, Norway, US and Sweden have used a combination of 3D computer modelling and real-world observations to show the previously unknown, yet profound dynamic consequences tied to a growing number of lakes forming on the Greenland ice sheet.

Lakes form on the surface of the Greenland ice sheet each summer as the weather warms. Many exist for weeks or months, but drain in just a few hours through more than a kilometre of ice, transferring huge quantities of water and heat to the base of the ice sheet. The affected areas include sensitive regions of the ice sheet interior where the impact on ice flow is potentially large.

Previously, it had been thought that these 'drainage events' were isolated incidents, but the new research, led by the University of Cambridge, shows that the lakes form a massive network and become increasingly interconnected as the weather warms. When one lake drains, the water quickly spreads under the ice sheet, which responds by flowing faster. The faster flow opens new fractures on the surface and these fractures act as conduits for the drainage of other lakes. This starts a chain reaction that can drain many other lakes, some as far as 80 kilometres away.

These cascading events - including one case where 124 lakes drained in just five days - can temporarily accelerate ice flow by as much as 400%, which makes the ice sheet less stable, and increases the rate of associated sea level rise. The results are reported in the journal Nature Communications.

The study demonstrates how forces within the ice sheet can change abruptly from one day to the next, causing solid ice to fracture suddenly. The model developed by the international team shows that lakes forming in stable areas of the ice sheet drain when fractures open in response to a high tensile shock force acting along drainage paths of water flowing beneath the ice sheet when other lakes drain far away.

"This growing network of melt lakes, which currently extends more than 100 kilometres inland and reaches elevations as high a 2,000 metres above sea level, poses a threat for the long-term stability of the Greenland ice sheet," said lead author Dr Poul Christoffersen, from Cambridge's Scott Polar Research Institute.

"This ice sheet, which covers 1.7 million square kilometres, was relatively stable 25 years ago, but now loses one billion tonnes of ice every day. This causes one millimetre of global sea level rise per year, a rate which is much faster than what was predicted only a few years ago."

The study departs from the current consensus that lakes forming at high elevations on the Greenland ice sheet have only a limited potential to influence the flow of ice sheet as climate warms. Whereas the latest report by Intergovernmental Panel on Climate Change concluded that surface meltwater, although abundant, does not impact the flow of the ice sheet, the study suggests that meltwater delivered to the base of the ice sheet through draining lakes in fact drives episodes of sustained acceleration extending much farther onto the interior of the ice sheet than previously thought.

"Transfer of water and heat from surface to the bed can escalate extremely rapidly due to a chain reaction," said Christoffersen. "In one case we found all but one of 59 observed lakes drained in a single cascading event. Most of the melt lakes drain in this dynamic way."

Although the delivery of small amounts of meltwater to the base of the ice sheet only increases the ice sheet's flow locally, the study shows that the response of the ice sheet can intensify through knock-on effects.

When a single lake drains, the ice flow temporarily accelerates along the path taken by water flowing along the bottom of the ice sheet. Lakes situated in stable basins along this path drain when the loss of friction along the bed temporarily transfers forces to the surface of the ice sheet, causing fractures to open up beneath other lakes, which then also drain.

"The transformation of forces within the ice sheet when lakes drain is sudden and dramatic," said co-author Dr Marion Bougamont, also from the Scott Polar Research Institute. "Lakes that drain in one area produce fractures that cause more lakes to drain somewhere elsewhere. It all adds up when you look at the pathways of water underneath the ice."

The study used high-resolution satellite images to confirm that fractures on the surface of the ice sheet open up when cascading lake drainage occurs. "This aspect of our work is quite worrying," said Christoffersen. "We found clear evidence of these crevasses at 1,800 metres above sea level and as far 135 kilometres inland from the ice margin. This is much farther inland than previously considered possible."

While complete loss of all ice in Greenland remains extremely unlikely this century, the highly dynamic manner in which the ice sheet responds to Earth's changing climate clearly underscores the urgent need for a global agreement that will reduce the emission of greenhouse gases.

Research paper


Related Links
University of Cambridge
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Glaciers in Mongolia's Gobi Desert actually shrank during the last ice age
Seattle WA (SPX) Mar 08, 2018
The simple story says that during the last ice age, temperatures were colder and ice sheets expanded around the planet. That may hold true for most of Europe and North America, but new research from the University of Washington tells a different story in the high-altitude, desert climates of Mongolia. The recent paper in Quaternary Science Reviews is the first to date ancient glaciers in the high mountains of Mongolia's Gobi Desert. It compares them with glacial records from nearby mountains to re ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Astronaut Scott Kelly weighs in on the 'State of Science'

Knowledge matters for Year of Education on Station

NASA, partners seek input on standards for deep space technologies

Goddard licenses gear bearing tech to Bahari Energy for urban wind power

ICE WORLD
SpaceX carries out 50th launch of Falcon 9 rocket

NASA team outfits Orion for abort test with lean approach

World-first firing of air-breathing electric thruster

GOES-S marks 100th launch of Rocketdyne AJ-60A solid rocket booster

ICE WORLD
The Case of the Martian Boulder Piles

Opportunity collects more 'Selfie' frames

Dyes for 'live' extremophile labeling will help discover life on Mars

Mars Express views moons set against Saturn's rings

ICE WORLD
China moving ahead with plans for next-generation X-ray observatory

China to launch Long March-5B rocket in 2019

Satellite will test plan for global China led satcom network

China plans rocket sea-launch

ICE WORLD
Lockheed Martin Begins Assembly of JCSAT-17 Commercial Communications Satellite

ESA Astronaut will test CIMON aboard the ISS Watson AI

Iridium Certus readies for takeoff with aviation service providers

ESA incubators ranked among world's best

ICE WORLD
Researchers use 'flying focus' to better control lasers over long distances

Technique to see objects hidden around corners

New imaging technology shows laser pulses are formed from chaos

Latest Updates from NASA on IMAGE Recovery

ICE WORLD
Study sheds light on the genetic origins of the two sexes

Heat shock system helps bug come back to life after drying up

Rare mineral discovered in plants for first time

Hubble observes exoplanet atmosphere in more detail than ever before

ICE WORLD
Jupiter's turmoil more than skin deep: researchers

Jupiter's Jet-Streams Are Unearthly

You are entering the Jovian Twilight Zone

The PI's Perspective: Why Didn't Voyager Explore the Kuiper Belt?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.