. 24/7 Space News .
IRON AND ICE
Ceramic chips inside meteorites hint at wild days of the early solar system
by Louise Lerner for UChicago News
Chicago IL (SPX) Feb 15, 2021

An example of a meteorite studded with chips of rock from earlier ages.

A new analysis of ceramic chips embedded in meteorites suggests the formation of our solar system was not as quiet and orderly as we once thought.

A new study from University of Chicago scientists builds evidence that the baby solar system likely witnessed wild temperature swings and changing conditions-contradicting the decades-old theory that the solar system had gradually and steadily cooled following the formation of the Sun.

Published Jan. 6 in Science Advances, the study finds its answers in gifts from outer space. Because rocks on Earth are constantly pulled under tectonic plates, melted and reformed, they don't offer much evidence for what our solar system looked like four and half billion years ago. Instead, scientists look to meteorites.

"These meteorites are basically aggregates of the dust that was in the solar nebula when the planets formed," said Nicolas Dauphas, a professor in the Department of Geophysical Sciences at the University of Chicago and co-author of the paper. "They are a snapshot of what was going on at the particular time period."

A particular kind of meteorite called a carbonaceous chondrite often comes studded with bits of ceramic material, like chocolate chips in a cookie. These chips are even older than their cookies; they are thought to be witness to the first 100,000 years of our solar system.

For decades, scientists have analyzed meteorites to try to understand the conditions of the early solar system, which can offer clues as to how the planets formed. (Much of this pioneering work was done at the University of Chicago throughout the 20th century.) The prevailing view was that the sun had cooled gently and steadily, and objects such as the ceramic chips were formed out of solar gas that had quietly condensed.

But some other recent findings have caused scientists to question this view, and new technology means we are now capable of much more rigorous studies. Armed with new techniques, UChicago graduate student Justin Hu sought to analyze the makeup of the ceramic chips with extreme precision.

Hu and Dauphas wanted to measure the amounts of different isotopes in the chips, which can tell you about the conditions in the gas as the chips formed. Using complex equipment in Dauphas' Origins Lab, including a one-of-a-kind patented purification system that the team developed, Hu measured the isotopes for eight different elements inside the chips.

"They did not have the signature we were expecting," said Hu, who is the first author on the study. "The results indicated that temperatures these ceramic inclusions encountered as they formed would have been over 1,600 Kelvin-or about 2,400 degrees Fahrenheit-over tens to hundreds of years."

This picture indicates a young star that was flaring and fluctuating over a long time period, affecting everything around it.

Scientists had observed such extreme flares around young stars in other solar systems, but they weren't sure whether this happened in our own system.

"Understanding these conditions is very important because it sets the stage for the formation of the planets," Dauphas said. "They can tell you about the processes that shaped the composition of solar system planets-for example, why do Earth and Mars have different makeups?"

"This isn't the first evidence that the early stages of our sun were violent years," said Prof. Andrew M. Davis, another co-author, "but there's a richness to these findings that allows us to say more about the timescale over which this occurred-which is many, many days."

Davis was among a group of UChicago scientists who conducted some of the first such studies on similar meteorites back in the 1970s. "Justin has now proved the primary process was evaporation, not condensation," he said. "It's very satisfying to see our ideas from a long time ago that were partially right, but also to see them proved wrong in a really elegant and quantitative way."

The study included several other co-authors from UChicago's Department of Geophysical Sciences: graduate students Francois Tissot (now at Caltech) and James Zhang, postdoctoral researcher Thomas Ireland (now at Boston University), Research Associate Professor Reika Yokochi, Prof. Fred Ciesla and Prof. Emeritus Lawrence Grossman.

Other co-authors were Michael Y. Hu and Jiyong Zhao with Argonne National Laboratory, Mathieu Roskosz with the Pierre and Marie Curie University in France, and Bruce Charlier with the Victoria University of Wellington in New Zealand. Meteorite samples were provided by the Robert A. Pritzker Center for Meteoritics and Polar Studies at the Field Museum.

"Heating events in the nascent solar system recorded by rare earth element isotopic fractionation in refractory inclusions."

Research paper


Related Links
UChicago
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Oldest carbonates in the solar system
Heidelberg, Germany (SPX) Jan 22, 2021
A meteorite that fell in northern Germany in 2019 contains carbonates which are among the oldest in the solar system; it also evidences the earliest presence of liquid water on a minor planet. The high-resolution Ion Probe - a research instrument at the Institute of Earth Sciences at Heidelberg University - provided the measurements. The investigation by the Cosmochemistry Research Group led by Prof. Dr Mario Trieloff was part of a consortium study coordinated by the University of Munster with par ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Ball Aerospace to integrate and test "sailcraft" for NASA solar propulsion demonstration

The Planetary Society Presents NASA Recommendations to the Biden-Harris Administration

Early crewed travel to Mars

Best way to get around the Solar System

IRON AND ICE
One small step towards spaceflight in the UK as government publishes environmental guidance

Ozmens' SNC Dream Chaser spaceplane closer to commercial runway landing

ABL Space Systems to power first UK Vertical Satellite Launch

OneSpace launches another private carrier rocket

IRON AND ICE
UAE's 'Hope' probe enters Mars orbit in first for Arab world

Precise braking helps China's Tianwen 1 probe enter Mars orbit

Join ASU Mastcam-Z team for a live watch party of NASA's Mars 2020 Perseverance rover landing

SwRI scientist proposes a new timeline for Mars terrains

IRON AND ICE
Chinese tracking vessel sets sail for monitoring missions in Indian Ocean

China's 'space dream': A Long March to the Moon and beyond

Three generations dedicated to space program

China's space station core module, cargo craft pass factory review

IRON AND ICE
ESA Mars orbiters support NASA Perseverance landing

Elon Musk Hints at When People Could Invest in Starlink Shares

Thales Alenia Space wins $3.0 bn Canadian contract

Mikhail Kokorich resigns his CEO position in Momentus Space

IRON AND ICE
Origami-inspired antenna technology for use in small satellites

Isotropic Systems to accelerate commercial readiness of multi-beam antenna

Existential threat to the space economy in 2021

ESA and UNOOSA illustrate space debris problem

IRON AND ICE
Lasers reveal the secret interior of rocky exoplanets

A new way of forming planets

Super-Earth atmospheres probed at Sandia's Z machine

Can super-Earth interior dynamics set the table for habitability

IRON AND ICE
Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.