![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pittsburgh, PA (SPX) May 27, 2022
Researchers from Carnegie Mellon University took an all-terrain vehicle on wild rides through tall grass, loose gravel and mud to gather data about how the ATV interacted with a challenging, off-road environment. They drove the heavily instrumented ATV aggressively at speeds up to 30 miles an hour. They slid through turns, took it up and down hills, and even got it stuck in the mud - all while gathering data such as video, the speed of each wheel and the amount of suspension shock travel from seven types of sensors. The resulting dataset, called TartanDrive, includes about 200,000 of these real-world interactions. The researchers believe the data is the largest real-world, multimodal, off-road driving dataset, both in terms of the number of interactions and types of sensors. The five hours of data could be useful for training a self-driving vehicle to navigate off road. "Unlike autonomous street driving, off-road driving is more challenging because you have to understand the dynamics of the terrain in order to drive safely and to drive faster," said Wenshan Wang, a project scientist in the Robotics Institute (RI). Previous work on off-road driving has often involved annotated maps, which provide labels such as mud, grass, vegetation or water to help the robot understand the terrain. But that sort of information isn't often available and, even when it is, might not be useful. A map area labeled as "mud," for example, may or may not be drivable. Robots that understand dynamics can reason about the physical world. The research team found that the multimodal sensor data they gathered for TartanDrive enabled them to build prediction models superior to those developed with simpler, nondynamic data. Driving aggressively also pushed the ATV into a performance realm where an understanding of dynamics became essential, said Samuel Triest, a second-year master's student in robotics. "The dynamics of these systems tend to get more challenging as you add more speed," said Triest, who was lead author on the team's resulting paper. "You drive faster, you bounce off more stuff. A lot of the data we were interested in gathering was this more aggressive driving, more challenging slopes and thicker vegetation because that's where some of the simpler rules start breaking down." Though most work on self-driving vehicles focuses on street driving, the first applications likely will be off road in controlled access areas, where the risk of collisions with people or other vehicles is limited. The team's tests were performed at a site near Pittsburgh that CMU's National Robotics Engineering Center uses to test autonomous off-road vehicles. Humans drove the ATV, though they used a drive-by-wire system to control steering and speed. "We were forcing the human to go through the same control interface as the robot would," Wang said. "In that way, the actions the human takes can be used directly as input for how the robot should act." Triest will present the TartanDrive study at the International Conference on Robotics and Automation (ICRA) this week in Philadelphia.
![]() ![]() Manufacturers getting to grips with airless tyres Colmar-Berg, Luxembourg (AFP) May 22, 2022 Airless tyres that never go flat or need to be inflated: It's a decades-long dream that manufacturers hope to turn into a reality soon, but for truck drivers first. The challenges that the technology faces were put on display at a Goodyear test track in Luxembourg, where a group of journalists put a Tesla equipped with airless tyres through its paces. Instead of being filled with air, the tyres have a web of spokes that keep the wheels firm and give them a see-through look. The thin layer of ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |