. 24/7 Space News .
CARBON WORLDS
Carbon's interstellar journey to Earth
by Staff Writers
Ann Arbor MI (SPX) Apr 02, 2021

illustration only

We are made of stardust, the saying goes, and a pair of studies including University of Michigan research finds that may be more true than we previously thought. The first study, led by U-M researcher Jie (Jackie) Li and published in Science Advances, finds that most of the carbon on Earth was likely delivered from the interstellar medium, the material that exists in space between stars in a galaxy. This likely happened well after the protoplanetary disk, the cloud of dust and gas that circled our young sun and contained the building blocks of the planets, formed and warmed up.

Carbon was also likely sequestered into solids within one million years of the sun's birth--which means that carbon, the backbone of life on earth, survived an interstellar journey to our planet.

Previously, researchers thought carbon in the Earth came from molecules that were initially present in nebular gas, which then accreted into a rocky planet when the gases were cool enough for the molecules to precipitate. Li and her team, which includes U-M astronomer Edwin Bergin, Geoffrey Blake of the California Institute of Technology, Fred Ciesla of the University of Chicago and Marc Hirschmann of the University of Minnesota, point out in this study that the gas molecules that carry carbon wouldn't be available to build the Earth because once carbon vaporizes, it does not condense back into a solid.

"The condensation model has been widely used for decades. It assumes that during the formation of the sun, all of the planet's elements got vaporized, and as the disk cooled, some of these gases condensed and supplied chemical ingredients to solid bodies. But that doesn't work for carbon," said Li, a professor in the U-M Department of Earth and Environmental Sciences.

Much of carbon was delivered to the disk in the form of organic molecules. However, when carbon is vaporized, it produces much more volatile species that require very low temperatures to form solids. More importantly, carbon does not condense back again into an organic form. Because of this, Li and her team inferred most of Earth's carbon was likely inherited directly from the interstellar medium, avoiding vaporization entirely.

To better understand how Earth acquired its carbon, Li estimated the maximum amount of carbon Earth could contain. To do this, she compared how quickly a seismic wave travels through the core to the known sound velocities of the core.

This told the researchers that carbon likely makes up less than half a percent of Earth's mass. Understanding the upper bounds of how much carbon the Earth might contain tells the researchers information about when the carbon might have been delivered here.

"We asked a different question: We asked how much carbon could you stuff in the Earth's core and still be consistent with all the constraints," Bergin said, professor and chair of the U-M Department of Astronomy. "There's uncertainty here. Let's embrace the uncertainty to ask what are the true upper bounds for how much carbon is very deep in the Earth, and that will tell us the true landscape we're within."

A planet's carbon must exist in the right proportion to support life as we know it. Too much carbon, and the Earth's atmosphere would be like Venus, trapping heat from the sun and maintaining a temperature of about 880 degrees Fahrenheit. Too little carbon, and Earth would resemble Mars: an inhospitable place unable to support water-based life, with temperatures around minus 60.

In a second study by the same group of authors, but led by Hirschmann of the University of Minnesota, the researchers looked at how carbon is processed when the small precursors of planets, known as planetesimals, retain carbon during their early formation. By examining the metallic cores of these bodies, now preserved as iron meteorites, they found that during this key step of planetary origin, much of the carbon must be lost as the planetesimals melt, form cores and lose gas. This upends previous thinking, Hirschmann says.

"Most models have the carbon and other life-essential materials such as water and nitrogen going from the nebula into primitive rocky bodies, and these are then delivered to growing planets such as Earth or Mars," said Hirschmann, professor of earth and environmental sciences. "But this skips a key step, in which the planetesimals lose much of their carbon before they accrete to the planets."

Hirschmann's study was recently published in Proceedings of the National Academy of Sciences.

"The planet needs carbon to regulate its climate and allow life to exist, but it's a very delicate thing," Bergin said. "You don't want to have too little, but you don't want to have too much."

Bergin says the two studies both describe two different aspects of carbon loss--and suggest that carbon loss appears to be a central aspect in constructing the Earth as a habitable planet.

"Answering whether or not Earth-like planets exist elsewhere can only be achieved by working at the intersection of disciplines like astronomy and geochemistry," said Ciesla, a U. of C. professor of geophysical sciences.

"While approaches and the specific questions that researchers work to answer differ across the fields, building a coherent story requires identifying topics of mutual interest and finding ways to bridge the intellectual gaps between them. Doing so is challenging, but the effort is both stimulating and rewarding."

Blake, a co-author on both studies and a Caltech professor of cosmochemistry and planetary science, and of chemistry, says this kind of interdisciplinary work is critical.

"Over the history of our galaxy alone, rocky planets like the Earth or a bit larger have been assembled hundreds of millions of times around stars like the Sun," he said. "Can we extend this work to examine carbon loss in planetary systems more broadly? Such research will take a diverse community of scholars."


Related Links
University Of Michigan
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
How to make carbon capture and sequestration work and commercialize it
San Diego CA (SPX) Mar 23, 2021
There are 12 essential attributes that explain why commercial carbon capture and sequestration projects succeed or fail in the U.S., University of California San Diego researchers say in a recent study published in Environmental Research Letters. Carbon capture and sequestration (CCS) has become increasingly important in addressing climate change. The Intergovernmental Panel on Climate Change (IPCC) relies greatly on the technology to reach zero carbon at low cost. Additionally, it is among the fe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Nevada company plans space station with inflatable pods

Deep-sea exploration breakthrough to guide future space exploration missions

Virgin Galactic and Land Rover announce global partnership extension as new spaceship is revealed

Russian Progress MS-14 spacecraft sets new flight duration record

CARBON WORLDS
Florida rocket company rebrands, plans bigger rocket

SpaceX Starship rocket test ends in another failure: Musk

Gilmour Space to launch Fleet satellites in 2023

SpaceX introduces final members of all-civilian Inspiration4 crew

CARBON WORLDS
InSight detects two sizable quakes on Mars

Rover drops off Mars Helicopter Ingenuity for first flight on Mars

Sensors collect crucial data on Mars landings with arrival of Perseverance

NASA's Ingenuity helicopter dropped on Mars' surface ahead of flight

CARBON WORLDS
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

CARBON WORLDS
BlackSky's newest satellite delivers first insights within 24 hours

Nine global space startups to join Australia's first space dedicated incubator program

New study finds satellites contribute significant light pollution to night skies

OneWeb welcomes TrustComm as a DoD Distribution Partner

CARBON WORLDS
ESA invites ideas to open up in-orbit servicing market

Robot security dogs start guarding Tyndall Air Force Base

Tesat Technology chosen for US Govt Program

Microsoft wins $22 bn US army contract for augmented reality gear

CARBON WORLDS
Roman Space Telescope predicted to find 100,000 transiting planets

How asteroid dust helped us prove life's raw ingredients can evolve in outer space

Photosynthesis could be as old as life itself

Pandora Mission Would Expand NASA's Capabilities in Probing Alien Worlds

CARBON WORLDS
First X-rays from Uranus Discovered

NASA's Europa Clipper builds hardware, moves toward assembly

SwRI scientists discover a new auroral feature on Jupiter

The PI's Perspective: Far From Home









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.