. 24/7 Space News .
TECH SPACE
Cancer cells destroyed with dinosaur extinction metal
by Staff Writers
Warwick UK (SPX) Nov 06, 2017


Iridium was first discovered in 1803, and its name comes from the Latin for 'rainbow'. From the same family as platinum, it is hard, brittle, and is the world's most corrosion-resistant metal. Yellow in colour, its melting point is more than 2400 Celsius. The metal is rare on Earth, but is abundant in meteoroids - and large amounts of iridium have been discovered in the Earth's crust from around 66 million years ago, leading to the theory that it came to this planet with an asteroid which caused the extinction of the dinosaurs.

Cancer cells can be targeted and destroyed with the metal from the asteroid that caused the extinction of the dinosaurs, according to new research by an international collaboration between the University of Warwick and Sun Yat-Sen University in China.

Researchers from the Professor Sadler and Professor O'Connor groups in Warwick's Department of Chemistry and Professor Hui Chao's group at Sun Yat-Sen have demonstrated that iridium - the world's second densest metal - can be used to kill cancer cells by filling them with deadly version of oxygen, without harming healthy tissue.

The researchers created a compound of iridium and organic material, which can be directly targeted towards cancerous cells, transferring energy to the cells to turn the oxygen (O2) inside them into singlet oxygen, which is poisonous and kills the cell - without harming any healthy tissue.

The process is triggered by shining visible laser light through the skin onto the cancerous area - this reaches the light-reactive coating of the compound, and activates the metal to start filling the cancer with singlet oxygen.

The researchers found that after attacking a model tumour of lung cancer cells, grown by the researchers in the laboratory to form a tumour-like sphere, with red laser light (which can penetrate deeply through the skin), the activated organic-iridium compound had penetrated and infused into every layer of the tumour to kill it - demonstrating how effective and far-reaching this treatment is.

They also proved that the method is safe to healthy cells by conducting the treatment on non-cancerous tissue and finding it had no effect.

Furthermore, the researchers used state-of-the-art ultra-high resolution mass spectrometry to gain an unprecedented view of the individual proteins within the cancer cells - allowing them to determine precisely which proteins are attacked by the organic-iridium compound.

After vigorously analysing huge amounts of data - thousands of proteins from the model cancer cells, they concluded that the iridium compound had damaged the proteins for heat shock stress, and glucose metabolism, both known as key molecules in cancer.

The University of Warwick has the UK's most advanced laboratory for this type of highly advanced mass spectrometry, and is a world-class centre of analytical science.

Co-author Cookson Chiu is a postgraduate researcher in Warwick's Department of Chemistry, funded by the Engineering and Physical Sciences Research Council and Bruker. He commented: "This project is a leap forward in understanding how these new iridium-based anti-cancer compounds are attacking cancer cells, introducing different mechanisms of action, to get around the resistance issue and tackle cancer from a different angle."

Dr Pingyu Zhang and Dr Huaiyi Huang are Royal Society Newton International Fellows in Warwick's Department of Chemistry. Dr Zhang added:

"Our innovative approach to tackle cancer involving targeting important cellular proteins can lead to novel drugs with new mechanisms of action. These are urgently needed. In addition, research links between UK and Chinese academics will not only lead to lasting collaborations, but also have potential to open up the translation of new drugs into the clinic as a UK-China joint development"

Peter O'Connor, Professor of Analytical Chemistry at Warwick, noted: "Remarkable advances in modern mass spectrometry now allow us to analyse complex mixtures of proteins in cancer cells and pinpoint drug targets, on instruments that are sensitive enough to weigh even a single electron!"

Professor Peter Sadler is excited about where this work can lead. He said: "The precious metal platinum is already used in more than 50% of cancer chemotherapies. The potential of other precious metals such as iridium to provide new targeted drugs which attack cancer cells in completely new ways and combat resistance, and which can be used safely with the minimum of side-effects, is now being explored.

"International collaborations can greatly hasten progress. It's certainly now time to try to make good medical use of the iridium delivered to us by an asteroid 66 million years ago!"

Photochemotherapy - using laser light to target cancer - is fast emerging as a viable, effective and non-invasive treatment. Patients are becoming increasingly resistant to traditional therapies, so it is vital to establish new pathways like this for fighting the disease.

Iridium was first discovered in 1803, and its name comes from the Latin for 'rainbow'. From the same family as platinum, it is hard, brittle, and is the world's most corrosion-resistant metal. Yellow in colour, its melting point is more than 2400 Celsius.

The metal is rare on Earth, but is abundant in meteoroids - and large amounts of iridium have been discovered in the Earth's crust from around 66 million years ago, leading to the theory that it came to this planet with an asteroid which caused the extinction of the dinosaurs.

Distinguished as a 'Very Important Paper', the research, 'Organo-iridium photosensitizers can induce specific oxidative attack on proteins in cancer cells' is published in the Wiley journal Angewandte Chemie.

Research paper

TECH SPACE
How to store information in your clothes invisibly, without electronics
Seattle WA (SPX) Nov 02, 2017
A new type of smart fabric developed at the University of Washington could pave the way for jackets that store invisible passcodes and open the door to your apartment or office. The UW computer scientists have created fabrics and fashion accessories that can store data - from security codes to identification tags - without needing any on-board electronics or sensors. As described in ... read more

Related Links
University of Warwick
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Stressed seedlings in space

Orbital ATK's to deliver supplies to International Space Station

How Does Your Space Garden Grow

NanoRacks Deploys Second Kaber-Class Microsatellite This Week, First On-Orbit Assembly

TECH SPACE
Russia embezzlement probe at rocket firm Soyuz

Alaska Aerospace Launches Aurora Launch Services Company

Launch your design with Cheops

NASA Selects Studies for Gateway Power and Propulsion Element

TECH SPACE
Insight will carry over two million names to Mars

Opportunity Does a Wheelie and is Back on Solid Footing

NASA Opens $2 Million Third Phase of 3D-Printed Habitat Competition

Martian Ridge Brings Out Rover's Color Talents

TECH SPACE
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

TECH SPACE
European Space Week starts in Estonia

New Chinese sat comms company awaits approval

Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

TECH SPACE
One-step 3-D printing of catalysts developed at Ames Laboratory

How to store information in your clothes invisibly, without electronics

Cheyenne Mountain sees better satellite picture

Synthetic material acts like an insect cloaking device

TECH SPACE
18-Month Twinkle in a Forming Star Suggests a Very Young Planet

Scientists find potential 'missing link' in chemistry that led to life on earth

Overlooked Treasure: The First Evidence of Exoplanets

Atmospheric beacons guide NASA scientists in search for life

TECH SPACE
Juno Aces 8th Science Pass of Jupiter, Names New Project Manager

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Jupiter's X-ray auroras pulse independently









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.