. 24/7 Space News .
SPACE MEDICINE
CRISPR-Cas can now modify hundreds, of genes at once
by Brooks Hays
Washington (UPI) Aug 14, 2019

Scientists have supercharged CRISPR-Cas technology. According to a new study, the method can now be used to modify dozens, even hundreds, of genes.

Over the last decade, scientists have been perfecting the gene-editing method known as CRISPR-Cas. But even as the technique became more precise, it remained limited in scale. Until now, scientists were only able to use CRISPR-Cas to modify just a few genes at a time. Most of the time, scientists were only able to edit one gene at a time.

Now, researchers in Switzerland have revolutionized the process. In recent lab experiments, CRISPR-Cas was used to modify up to 25 target sites within a single cell's genes. And according to the latest research, the new method is capable of modifying dozens, even hundreds, of genes.

"Thanks to this new tool, we and other scientists can now achieve what we could only dream of doing in the past," Randall Platt, a professor of biosystems science and engineering at ETH Zurich, said in a news release.

Inside a cell, the replication and expression of genes is controlled by a complex systems of interactions between genes and proteins. According to Platt and his colleagues, the updated CRISPR-Cas method allows scientists to hack this complex system.

"Our method enables us, for the first time, to systematically modify entire gene networks in a single step," Platt said.

The more powerful version of CRISPR-Cas can be used to activate groups of genes, while reducing the expression of others. The technology can also be used to alter the timing of gene expression. Scientists could potentially use the new method to reprogram entire cells, which could be used for cell replacement therapy. The technology could also be used to turn stem cells into differentiated cell types for various research purposes.

CRISPR-Cas relies on guide RNA to lead an ezyme, Cas9, to the part of the chromosome that scientists want to edit. The enzyme works like molecular scissors, excising a gene's DNA code. When the cell recognizes the deletion, it attempt to repair the break. Scientists can hijack the cells' genetic repair mechanism to insert specific DNA.

To make the method more powerful, scientists integrated the guide RNA and Cas into a plasmid, or a circular DNA molecule. The plasmid can carry a longer list of genetic targets, sending the RNA-Cas pair out to multiple sites. Scientists also replaced Cas9 with a related Cas12a enzyme, which can both snip out target DNA and cut up the plasmid's RNA address list into individual addresses.

In tests in humans cells, researchers showed the technology could be used to augment 25 genes at once.

Researchers described the new technology this week in the journal Nature Methods.

"Our method provides a powerful platform to investigate and orchestrate the sophisticated genetic programs underlying complex cell behaviors," scientists wrote.


Related Links
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
How deep space travel could affect the brain
Washington DC (SPX) Aug 07, 2019
Exposure to chronic, low dose radiation - the conditions present in deep space - causes neural and behavioral impairments in mice, researchers report in eNeuro. These results highlight the pressing need to develop safety measures to protect the brain from radiation during deep space missions as astronauts prepare to travel to Mars. Radiation is known to disrupt signaling among other processes in the brain. However, previous experiments used short-term, higher dose-rate exposures of radiation, whic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Orion Service Module completes critical propulsion test

Two weeks of science and beyond on ISS

Study identifies way to enhance the sustainability of manufactured soils

As iPhone sales sputter, Apple moves toward reinvention, again

SPACE MEDICINE
AFRL achieves record-setting hypersonic ground test milestone

Pentagon working on 9 separate hypersonic missile projects to take on Russia, China

SpaceX launches Falcon 9 carrying Israel's AMOS-17 satellite

Little SLS launches in low speed wind tunnel

SPACE MEDICINE
Dark meets light on Mars

Optometrists verify Mars 2020 rover's perfect vision

New finds for Mars rover, seven years after landing

MEDLI2 installation on Mars 2020 aeroshell begins

SPACE MEDICINE
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

SPACE MEDICINE
Companies partner to offer a complete solution for space missions as a service

Space data relay system shows its speed

ATLAS Space Operations extends global reach with nine new ground stations

Arianespace launches INTELSAT 39 and EDRS-C

SPACE MEDICINE
Australia eyes rare earth deposits amid fears over China supplies

Could Mexico cactus solve world's plastics problem?

Q-Tech launches space-qualified multi-output LVDS Hybrid Oscillators

How roads can help cool sizzling cities

SPACE MEDICINE
Dead planets can 'broadcast' for up to a billion years

Pre-life building blocks spontaneously align in evolutionary experiment

Hordes of Earth's toughest creatures may now be living on Moon

Shining starlight on the search for life

SPACE MEDICINE
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.