24/7 Space News
CHIP TECH
Bringing the power of tabletop precision lasers for quantum science to the chip scale
illustration only
Bringing the power of tabletop precision lasers for quantum science to the chip scale
by Sonia Fernandez for UCSB News
Santa Barbara CA (SPX) Dec 13, 2024

For experiments that require ultra-precise measurements and control over atoms - think two-photon atomic clocks, cold-atom interferometer sensors and quantum gates - lasers are the technology of choice, the more spectrally pure (emitting a single color/frequency), the better. Conventional lab-scale laser technology currently achieves this ultra low-noise, stable light via bulky, costly tabletop systems designed to generate, harness and emit photons within a narrow spectral range.

But what if these atomic applications could be lifted from their current confines in labs and on benchtops? This advancement is at the heart of the effort at UC Santa Barbara engineering professor Daniel Blumenthal's lab, where his team seeks to recreate the performance of these lasers on lightweight devices that can fit in the palm of your hand.

"These smaller lasers will enable scalable laser solutions for actual quantum systems, as well as lasers for portable, field-deployable and space-based quantum sensors," said Andrei Isichenko, a graduate student researcher in Blumenthal's lab. "This will impact technology spaces such as quantum computing with neutral atoms and trapped ions and also cold atom quantum sensors such as atomic clocks and gravimeters."

In a paper in the journal Scientific Reports, Blumenthal, Isichenko and team present a development in this direction with a chip-scale ultra-low-linewidth self-injection locked 780 nm laser. This roughly matchbox-sized device, say the researchers, can perform better than current, narrow-linewidth 780 nm lasers, for a fraction of the cost to manufacture, and the space to hold them.

Lassoing the Laser

The atom motivating the laser development is rubidium, so chosen because of well-known properties that make it ideal for a variety of high-precision applications. The stability of its D2 optical transition lends the atom well to atomic clocks; the atom's sensitivity also makes it a popular choice for sensors and cold atom physics. By passing a laser through a vapor of rubidium atoms as the atomic reference, a near infrared laser can take on the characteristic of the stable atomic transition.

"You can use the atomic transition lines to lasso the laser," noted Blumenthal, the paper's senior author. "In other words, by locking the laser to the atomic transition line, the laser more or less takes on the characteristics of that atomic transition in terms of stability."

But a fancy red light does not a precision laser make. For a light of the desired quality, "noise" must be removed. Blumenthal describes this as a tuning fork versus guitar strings.

"If you have a tuning fork and hit a C note, it's probably a pretty perfect C," he explained. "But if you strum a C on a guitar, you can hear other tones in there." Similarly, lasers may incorporate different frequencies (colors) that generate extra "tones." To create the desired single frequency - pure deep-red light in this case - tabletop systems incorporate additional components to further calm down the laser light. The challenge for the researchers was to integrate all that functionality and performance onto a chip.

The team used a combination of a commercially available Fabry-Perot laser diode, some of the world's lowest-loss waveguides (fabricated in Blumenthal's lab); as well as highest quality factor resonators, all fabricated in a silicon nitride platform. By doing so, they were able to duplicate the performance of bulky, tabletop systems - and their device, according to their tests, can outperform some tabletop lasers as well as previously reported integrated lasers by four orders of magnitude in key metrics such as frequency noise and linewidth .

"The significance of the low linewidth values is that we can achieve a compact laser without sacrificing laser performance," Isichenko explained. "In some ways the performance is improved compared to conventional lasers because of full chip-scale integration. These linewidths help us better interact with atomic systems, eliminating contributions from the laser noise to fully resolve the atomic signal in response to, for example, the environment they are sensing." Low linewidths - in terms of this project a record-low sub-Hz fundamental and a sub-KHz integral - are indicative of the laser technology's stability and ability to overcome noise from both external and internal sources.

Further benefits of this technology include the cost - it uses a $50 diode, and employs a cost-effective and scalable fabrication process that is created using a CMOS compatible wafer scale process that draws from the electronic chip fabrication world.

The success of this technology means that it will be possible to deploy these high-performance, precision, low-cost photonics integrated lasers in a variety of situations in and out of the lab, including quantum experiments, atomic timekeeping and the sensing of the faintest of signals, such as the shifts of gravitational acceleration around the Earth.

"You can put these on satellites to make a gravitational map of the Earth and around the Earth with a certain amount of precision," Blumenthal said. "You could measure sea level rise, changes in sea ice and earthquakes by sensing the gravitational fields around the Earth." The compactness, low-power consumption and light weight is a "perfect fit," he added, for technology to be deployed in space.

Research Report:Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser

Related Links
University of California - Santa Barbara
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Researchers design new materials for advanced chip manufacturing
Dallas TX (SPX) Dec 10, 2024
To make computer chips - and the devices they power - even smaller and more efficient, engineers need new materials. Three University of Texas at Dallas faculty members and collaborators from other universities and two industry partners have teamed up to design and test indium-based materials to enable the manufacture of the next generation of computer chips. The researchers have received a $1.9 million, three-year grant to support their work through the National Science Foundation Future of ... read more

CHIP TECH
ESA to collaborate with ISRO on Gaganyaan missions

Week starts on ISS with spacewalk preparations and research activities

Neuraspace expands satellite tracking with second optical telescope in Chile

Indian Navy and ISRO conduct astronaut well deck recovery trials for Gaganyaan Mission

CHIP TECH
Undeterred by Friday the 13th, SpaceX plans pair of launches

China Long March 8A prepares for first flight in January 2025

NASA's crew capsule had heat shield issues during Artemis I

Equatorial Launch Australia shifts focus to new Queensland spaceport site

CHIP TECH
Mars dust storms may be linked to warming weather patterns

Liquid on Mars was not necessarily all water

Purdue scientist expecting new world to reveal itself to Mars rover

China's Tianwen-1 probe reveals new insights into Martian internal gravity waves

CHIP TECH
China boosts Lunar and Mars mission capabilities with advanced Long March rockets

Long March 12 set for inaugural launch from Hainan space center

China inflatable space capsule aces orbital test

Tianzhou 7 completes cargo Mission, Tianzhou 8 docks with Tiangong

CHIP TECH
AST SpaceMobile and Vodafone sign long-term agreement for global connectivity

Seaspan signs agreement with KVH for OneWeb LEO satellite solution

EIB backs Sateliot's IoT Satellite Network with euro 30M loan

Airbus completes delivery of Space42 Thuraya 4 satellite for December launch

CHIP TECH
Stretchable, flexible, recyclable. This plastic is fantastic

Speaking crystal AI predicts atomic arrangements to aid material discovery

Researchers uncover strong light-matter interactions in quantum spin liquids

Cracking the Code for materials that can learn

CHIP TECH
Discovery of a planet with a shifting gas tail

Unveiling a hydrogen-controlled nano-switch in electron transport proteins

Scientists examine role of iron sulfides in life's origins at early Earth hot springs

Towards independent robotic exploration of ocean worlds

CHIP TECH
NASA marks ten years of Hubble's Outer Planets Survey

Magnetic tornado is stirring up the haze at Jupiter's poles

Uranus moons could hold clues to hidden oceans for future space missions

A clue to what lies beneath the bland surfaces of Uranus and Neptune

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.