. 24/7 Space News .
PHYSICS NEWS
Breaking Newton's Law
by Staff Writers
Innsbruck, Austria (SPX) Jun 05, 2017


Innsbruck physicists have observed an intriguing oscillatory back-and-forth motion of a quantum particle in a one-dimensional atomic gas. Credit Florian Meinert

A ripe apple falling from a tree has inspired Sir Isaac Newton to formulate a theory that describes the motion of objects subject to a force. Newton's equations of motion tell us that a moving body keeps on moving on a straight line unless any disturbing force may change its path. The impact of Newton's laws is ubiquitous in our everyday experience, ranging from a skydiver falling in the earth's gravitational field, over the inertia one feels in an accelerating airplane, to the earth orbiting around the sun.

In the quantum world, however, our intuition for the motion of objects is strongly challenged and may sometimes even completely fail. What about imagining a marble falling through water oscillating up and down rather than just moving straight downwards? Sounds strange.

Yet, that's what experimental physicist from Innsbruck in collaboration with theorists from Munich, Paris and Cambridge have discovered for a quantum particle. At the heart of this surprising behavior is what physicists call 'quantum interference', the fact that quantum mechanics allows particles to behave like waves, which can add up or cancel each other.

Approaching absolute zero temperature
To observe the quantum particle oscillating back and forth the team had to cool a gas of Cesium atoms just above absolute zero temperature and to confine it to an arrangement of very thin tubes realized by high-power laser beams. By means of a special trick, the atoms were made to interact strongly with each other.

At such extreme conditions the atoms form a quantum fluid whose motion is restricted to the direction of the tubes. The physicists then accelerated an impurity atom, which is an atom in a different spin state, through the gas. As this quantum particle moved, it was observed to scatter off the gas particles and to reflect backwards. This led to an oscillatory motion, in contrast to what a marble would do when falling in water. The experiment demonstrates that Newton's laws cannot be used in the quantum realm.

Quantum fluids sometimes act like crystals
The fact that a quantum-wave may get reflected into certain directions has been known since the early days of the development of the theory of quantum mechanics. For example, electrons reflect at the regular pattern of solid crystals, such as a piece of metal. This effect is termed 'Bragg-scattering'. However, the surprise in the experiment performed in Innsbruck was that no such crystal was present for the impurity to reflect off.

Instead, it was the gas of atoms itself that provided a type of hidden order in its arrangement, a property that physicist dub 'correlations'. The Innsbruck work has demonstrated how these correlations in combination with the wave-nature of matter determine the motion of particles in the quantum world and lead to novel and exciting phenomena that counteract the experiences from our daily life.

Understanding the oddity of quantum mechanics may also be relevant in a broader scope, and help to understand and optimize fundamental processes in electronics components, or even transport processes in complex biological systems.

Research paper: Bloch oscillations in the absence of a lattice. Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler, Hanns-Christoph Nagerl. Science 2017. DOI: 10.1126/science.aah6616

PHYSICS NEWS
Gravitational Waves Detected for Third Time
Pasadena CA (SPX) Jun 02, 2017
The Laser Interferometer Gravitational-wave Observatory (LIGO) has made a third detection of gravitational waves, ripples in space and time, demonstrating that a new window in astronomy has been firmly opened. As was the case with the first two detections, the waves were generated when two black holes collided to form a larger black hole. The newfound black hole, formed by the merger, has ... read more

Related Links
University of Innsbruck
The Physics of Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Roscosmos Says Cooperation With NASA Unaffected by 'Political Outbursts'

Russia's New 'Federation' Spacecraft to be Launched from Baikonur in 2022

Astronauts return after marathon ISS mission

From 2D to 3D, Space Station Microscope Gets an Upgrade

PHYSICS NEWS
SpaceX's first recycled Dragon arrives at space station

SpaceX blasts off cargo using recycled spaceship

India shows off space prowess with launch of mega-rocket

Eutelsat signs new launch contract with Arianespace

PHYSICS NEWS
Study estimates amount of water needed to carve Martian valleys

Collateral damage from cosmic rays increases cancer risks for Mars astronauts

Curiosity Peels Back Layers on Ancient Martian Lake

Student-Made Mars Rover Concepts Lift Off

PHYSICS NEWS
Spotlight: First China-designed experiment flies to space station

News Analysis: U.S.-China space freeze may thaw with new commercial pathway

China willing to cooperate in peaceful space exploration: Xi

California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

PHYSICS NEWS
Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

PHYSICS NEWS
Study proves viability of quantum satellite communications

Indian Space Agency to Work on Electric Propulsion for Large Satellites

Saudi deal for counterfire radars approved by U.S. State Department

Mitsubishi Electric Completes New Satellite Component Production Facility

PHYSICS NEWS
Discovery reveals planet almost as hot as the Sun

A planet hotter than most stars

Hubble's tale of 2 exoplanets - Nature vs nurture

Astronomers discover alien world hotter than most stars

PHYSICS NEWS
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.