. 24/7 Space News .
Born Under The Sun: UV Light And The Origin Of Life

illustration by David Seal

London - Jun 02, 2003
Early evolution of life as we know it may have depended on DNA's ability to absorb UV light. This insight into the early moments of life on Earth comes from research published today in the journal BMC Evolutionary Biology.

The research fills in one of the major gaps in our understanding about the origins of life: how single molecules were able to join together to create the self-replicating long chain molecules of RNA, the precursors of DNA. It "sheds new light on the earliest steps of evolution," write Armen Mulkidjanian and his colleagues from Osnabr�ck University, Germany and National Institutes of Health, USA.

With no ozone layer the primordial Earth was a hostile place. This was especially true for long-chain molecules that would be broken up by UV radiation, which was at 100 times today's level. Most existing theories about how life evolved involve hiding the first life forms away from the light. Instead, Mulkidjanian and his colleagues have investigated the idea that high levels of UV light hitting the primordial earth were vital to RNA's survival.

The researchers used computer-modelling technology to assess the ability of RNA to form from its constituent parts, sugar phosphates and nitrogenous bases, with and without high levels of UV light.

They found that the ability of nitrogenous bases to absorb and disperse UV radiation could protect the backbone of primordial RNA from breaks. Under high levels of UV, RNA molecules were more stable than other large molecules and the small molecules that join together to create the RNA.

This gave RNA molecules a selective advantage, so that their levels then increased through the simulated process of natural selection. Moreover, part of the energy from the absorbed UV light could have driven the elongation of RNA chains.

"The suggested mechanism turns the high UV levels on primordial Earth from a perceived obstacle to the origin of life into the selective factor that, in fact, might have driven the whole process", write the authors.

"It seems quite unlikely that the extremely effective UV-quenching by all major nitrogenous bases is just incidental. We can assume that these bases were selected to perform the UV-protecting function before they became involved in the maintenance and transfer of genetic information.

"In this (primordial) world the nitrogenous bases served just as protecting units. Accordingly these units were replaceable and variable. Exactly this variability could have paved the way to the variability of the future genomes".

Three of the four nitrogenous bases that protected RNA from UV on primordial Earth are the same as those that make up the genetic code of DNA. Ironically, the ability of DNA to absorb UV light is now responsible for many skin cancer deaths.

When the bases of DNA absorb UV light they often suffer structural damage, although the DNA backbone remains intact. If this damage occurs within a gene it can lead to the alteration of that gene, which may cause cancer.

Related Links
BMC Evolutionary Biology
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Meteorites Rained On Earth After Massive Asteroid Breakup
Houston - May 13, 2003
Using fossil meteorites and ancient limestone unearthed throughout southern Sweden, marine geologists at Rice University have discovered that a colossal collision in the asteroid belt some 500 million years ago led to intense meteorite strikes over the Earth's surface.







  • A Deep Space Exploration Extravaganza Set To Unfold
  • Moon Society and Artemis Society Endorse Space Settlement Initiative
  • No Sweat With Personal Aircon
  • Iowa-based Company Takes Soyfoods to Space

  • Mars Express -- How To Be Fastest To The Red Planet
  • Wheels In The Sky NASA's Mars Exploration Program
  • Is There Martian Mud in Russell Crater
  • Scientists Eager To Get On BoardExoMars

  • Atlas 5 Launches Hellas-Sat
  • Air Products Wins Delta IV Supply Contract
  • Successful Liftoff For Ariane-5
  • AsiaSat 4 In Orbit Makes It 64 Consecutive Launch Successes For Atlas

  • OrbView-3 Imaging Satellite Commercial Remote Sensing Policy
  • Satellite Imagery Improves Agriculture Techniques
  • Foundation Hails White House Remote Sensing Policy
  • All That Glitters: The First ERS/Envisat Interferogram

  • Brighter Neptune Suggests A Planetary Change Of Seasons
  • Pluto-Kuiper Belt Mission Moves Ahead
  • Having Pups Over Pluto And The Planetary Misfits Of The Kuipers
  • Pork For All

  • Map Of Local Space Shows Su'n Lies In Middle Of Hole Piercing Galactic Plane
  • Automated Telescope Array Discoveries Mount
  • GBT Reveals Satellite Of Milky Way In Retrograde Orbit
  • Newly-Discovered Star May Be Third-Closest

  • Moon's Early History May Have Been Interrupted By Big Burp
  • Memories Of Orange Rock From The Lunar Age
  • Taos Goes Lunar With International Talkfest
  • Moon and Earth Formed out of Identical Material

  • Lockheed Martin and Spectrum Astro Team For GPS III Bid
  • AeroAstro Initiates SENS Remote Data Monitoring Service in North America
  • Communication Satellites Telling Us Where They Are
  • Upgraded GPS satellite Shipped To Cape for July Launch

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement