. 24/7 Space News .
STELLAR CHEMISTRY
Blue crystals in meteorites show that our sun went through the 'terrible twos'
by Staff Writers
Chicago IL (SPX) Jul 31, 2018

Illustration of the early solar disk, with an inset image of a blue hibonite crystal, one of the first minerals to form in the Solar System.

Our Sun's beginnings are a mystery. It burst into being 4.6 billion years ago, about 50 million years before the Earth formed. Since the Sun is older than the Earth, it's hard to find physical objects that were around in the Sun's earliest days - materials that bear chemical records of the early Sun. But in a new study in Nature Astronomy, ancient blue crystals trapped in meteorites reveal what the early Sun was like. And apparently, it had a pretty rowdy start.

"The Sun was very active in its early life - it had more eruptions and gave off a more intense stream of charged particles. I think of my son, he's three, he's very active too," says Philipp Heck, a curator at the Field Museum, professor at the University of Chicago, and author of the study.

"Almost nothing in the Solar System is old enough to really confirm the early Sun's activity, but these minerals from meteorites in the Field Museum's collections are old enough. They're probably the first minerals that formed in the Solar System."

The minerals Heck and his colleagues looked at are microscopic ice-blue crystals called hibonite, and their composition bears earmarks of chemical reactions that only would have occurred if the early Sun was spitting lots of energetic particles.

"These crystals formed over 4.5 billion years ago and preserve a record of some of the first events that took place in our Solar System. And even though they are so small - many are less than 100 microns across - they were still able to retain these highly volatile nobles gases that were produced through irradiation from the young Sun such a long time ago," says lead author Levke Koop, a post-doc from the University of Chicago and an affiliate of the Field Museum.

In its early days, before the planets formed, the Solar System was made up of the Sun with a massive disk of gas and dust spiraling around it. The region by the sun was hot. Really hot - more than 1,500 C, or 2,700 F. For comparison, Venus, the hottest planet in the Solar System, with surface temperatures high enough to melt lead, is a measly 872 F. As the disk cooled down, the earliest minerals began to form - blue hibonite crystals.

"The larger mineral grains from ancient meteorites are only a few times the diameter of a human hair. When we look at a pile of these grains under a microscope, the hibonite grains stand out as little light blue crystals - they're quite beautiful," says Andy Davis, another co-author also affiliated with the Field Museum and the University of Chicago. These crystals contain elements like calcium and aluminum.

When the crystals were newly formed, the young Sun continued to flare, shooting protons and other subatomic particles out into space. Some of these particles hit the blue hibonite crystals.

When the protons struck the calcium and aluminum atoms in the crystals, the atoms split apart into smaller atoms - neon and helium. And the neon and helium remained trapped inside the crystals for billions of years. These crystals got incorporated into space rocks that eventually fell to Earth as meteorites for scientists like Heck, Koop, and Davis to study.

Researchers have looked at meteorites for evidence of an early active Sun before. They didn't find anything. But, Koop notes, "If people in the past didn't see it, that doesn't mean it wasn't there, it might mean they just didn't have sensitive enough instruments to find it."

This time, the team examined the crystals with a unique state-of-the-art mass spectrometer in Switzerland - a garage-sized machine that can determine objects' chemical make-up. Attached to the mass spectrometer, a laser melted a tiny grain of hibonite crystal from a meteorite, releasing the helium and neon trapped inside so they could be detected. "We got a surprisingly large signal, clearly showing the presence of helium and neon - it was amazing," says Koop.

The bits of helium and neon provide the first concrete evidence of the Sun's long-suspected early activity. "It'd be like if you only knew someone as a calm adult - you'd have reason to believe they were once an active child, but no proof. But if you could go up into their attic and find their old broken toys and books with the pages torn out, it'd be evidence that the person was once a high-energy toddler," says Heck.

Unlike other hints that the early Sun was more active than it is today, there's no other good explanation for the crystals' make-up. "It's always good to see a result that can be clearly interpreted," says Heck. "The simpler an explanation is, the more confidence we have in it."

"In addition to finally finding clear evidence in meteorites that disk materials were directly irradiated, our new results indicate that the Solar System's oldest materials experienced a phase of irradiation that younger materials avoided. We think that this means that a major change occurred in the nascent Solar System after the hibonites had formed - perhaps the Sun's activity decreased, or maybe later-formed materials were unable to travel to the disk regions in which irradiation was possible," says Koop.

"What I think is exciting is that this tells us about conditions in the earliest Solar System, and finally confirms a long-standing suspicion," says Heck. "If we understand the past better, we'll gain a better understanding of the physics and chemistry of our natural world."


Related Links
Field Museum
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Young galaxy's halo offers clues to its growth and evolution
Maunakea HI (SPX) Jul 25, 2018
A team of astronomers has discovered a new way to unlock the mysteries of how the first galaxies formed and evolved. In a study published in Astrophysical Journal Letters, lead author Dawn Erb of the University of Wisconsin-Milwaukee and her team - for the very first time - used new capabilities at W. M. Keck Observatory on Maunakea, Hawaii to examine Q2343-BX418, a small, young galaxy located about 10 billion light years away from Earth. This distant galaxy is an analog for younger galaxies ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Space Station experiment reaches ultracold milestone

Sky's no limit: Japan firm to fly wedding plaques into space

Space tourism economics - financing and regulating trips to the final frontier

NASA to Name Astronauts Assigned to First Boeing, SpaceX Flights

STELLAR CHEMISTRY
Russia's Khrunichev Center Develops Concept of Reusable Rocket

Latest Blue Origin Launch Tests Technologies of Interest to Space Exploration

SpaceX launches, lands rocket in challenging conditions

Roscosmos' Research Center's Staff Suspected of Leaking Data Abroad

STELLAR CHEMISTRY
Evidence of subsurface Martian liquid water bolstered

Is Mars' Soil Too Dry to Sustain Life?

Life on Mars: Japan astronaut dreams after lake discovery

Scientists at Johns Hopkins Discover Why Mars Is So Dusty

STELLAR CHEMISTRY
China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

STELLAR CHEMISTRY
We'll soon have ten times more satellites in orbit - here's what that means

Rockwell Collins and Iridium Partner to Deliver Next-Generation Aviation Services

27 Satellites in 3 Years: Indian Private Sector Shifts Focus to Space Projects

Aerospace Workforce Training A National Mandate for 2018

STELLAR CHEMISTRY
Into The Void: hyper-real 'Star Wars' VR makes you the hero

Tech titans jostle as Pentagon calls for cloud contract bids

Lawmakers protest US deal allowing free plans for 3D guns

NASA Interns Develop and Release Navigation Software Simulating Star Tracker Navigation

STELLAR CHEMISTRY
NASA's TESS spacecraft starts science operations

How Can You Tell If That ET Story Is Real

WSU researcher sees possibility of moon life

X-ray Data May Be First Evidence of a Star Devouring a Planet

STELLAR CHEMISTRY
'Ribbon' wraps up mystery of Jupiter's magnetic equator

High-Altitude Jovian Clouds

The True Colors of Pluto and Charon

Radiation Maps of Jupiter's Moon Europa: Key to Future Missions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.