. 24/7 Space News .
SPACE MEDICINE
Bio-inspired, blood-repelling tissue glue could seal wounds quickly
by Anne Trafton for MIT News
Boston MA (SPX) Aug 11, 2021

MIT engineers have designed a strong, biocompatible glue that can seal injured tissues and stop bleeding, inspired by the sticky substance that barnacles use to cling to rocks.

Inspired by the sticky substance that barnacles use to cling to rocks, MIT engineers have designed a strong, biocompatible glue that can seal injured tissues and stop bleeding.

The new paste can adhere to surfaces even when they are covered with blood, and can form a tight seal within about 15 seconds of application. Such a glue could offer a much more effective way to treat traumatic injuries and to help control bleeding during surgery, the researchers say.

"We are solving an adhesion problem in a challenging environment, which is this wet, dynamic environment of human tissues. At the same time, we are trying to translate this fundamental knowledge into real products that can save lives," says Xuanhe Zhao, a professor of mechanical engineering and civil and environmental engineering at MIT and one of the senior authors of the study.

Christoph Nabzdyk, a cardiac anesthesiologist and critical care physician at the Mayo Clinic in Rochester, Minnesota, is also a senior author of the paper, which appears in Nature Biomedical Engineering. MIT Research Scientist Hyunwoo Yuk and postdoc Jingjing Wu are the lead authors of the study.

Natural inspiration
Finding ways to stop bleeding is a longstanding problem that has not been adequately solved, Zhao says. Sutures are commonly used to seal wounds, but putting stitches in place is a time-consuming process that usually isn't possible for first responders to perform during an emergency situation. Among members of the military, blood loss is the leading cause of death following a traumatic injury, and among the general population, it is the second leading cause of death following a traumatic injury.

In recent years, some materials that can halt bleeding, also called hemostatic agents, have become commercially available. Many of these consist of patches that contain clotting factors, which help blood to clot on its own. However, these require several minutes to form a seal and don't always work on wounds that are bleeding profusely.

Zhao's lab has been working to address this problem for several years. In 2019, his team developed a double-sided tissue tape and showed that it could be used to close surgical incisions. This tape, inspired by the sticky material that spiders use to capture their prey in wet conditions, includes charged polysaccharides that can absorb water from a surface almost instantaneously, clearing off a small dry patch that the glue can adhere to.

For their new tissue glue, the researchers once again drew inspiration from the natural world. This time, they focused their attention on the barnacle, a small crustacean that attaches itself to rocks, ship hulls, and even other animals such as whales. These surfaces are wet and often dirty - conditions that make adhesion difficult.

"This caught our eye," Yuk says. "It's very interesting because to seal bleeding tissues, you have to fight with not only wetness but also the contamination from this outcoming blood. We found that this creature living in a marine environment is doing exactly the same thing that we have to do to deal with complicated bleeding issues."

The researchers' analysis of barnacle glue revealed that it has a unique composition. The sticky protein molecules that help barnacles attach to surfaces are suspended in an oil that repels water and any contaminants found on the surface, allowing the adhesive proteins to attach firmly to the surface.

The MIT team decided to try to mimic this glue by adapting an adhesive they had previously developed. This sticky material consists of a polymer called poly(acrylic acid) embedded with an organic compound called an NHS ester, which provides adhesion, and chitosan, a sugar that strengthens the material. The researchers froze sheets of this material, ground it into microparticles, and then suspended those particles in medical grade silicone oil.

When the resulting paste is applied to a wet surface such as blood-covered tissue, the oil repels the blood and other substances that may be present, allowing the adhesive microparticles to crosslink and form a tight seal over the wound. Within 15 to 30 seconds of applying the glue, with gentle pressure applied, the glue sets and bleeding stops, the researchers showed in tests in rats.

One advantage of this new material over the double-sided tape the researchers designed in 2019 is that the paste can be molded to fit irregular wounds, while tape could be better suited to sealing surgical incisions or attaching medical devices to tissues, the researchers say. "The moldable paste can flow in and fit any irregular shape and seal it," Wu says. "This gives freedom to the users to adapt it to irregular-shaped bleeding wounds of all kinds."

Better bleeding control
In tests in pigs, Nabzdyk and his colleagues at the Mayo Clinic found that the glue was able to rapidly stop bleeding in the liver, and it worked much faster and more effectively than the commercially available hemostatic agents that they compared it to. It even worked when strong blood thinners (heparin) were given to the pigs so that the blood did not form clots spontaneously.

Their studies showed that the seal remains intact for several weeks, giving the tissue below time to heal itself, and that the glue induced little inflammation, similar to that produced by currently used hemostatic agents. The glue is slowly resorbed within the body over months, and it can also be removed earlier by applying a solution that dissolves it, if surgeons need to go in after the initial application to repair the wound.

The researchers now plan to test the glue on larger wounds, which they hope will demonstrate that the glue would be useful to treat traumatic injuries. They also envision that it could be useful during surgical procedures, which often require surgeons to spend a great deal of time controlling bleeding.

"We're technically capable of carrying out a lot of complicated surgeries, but we haven't really advanced as fast in the ability to control especially severe bleeding expeditiously," Nabzdyk says.

Another possible application would be to help stop bleeding that occurs in patients who have plastic tubes inserted into their blood vessels, such as those used for arterial or central venous catheters or for extracorporeal membrane oxygenation (ECMO). During ECMO, a machine is used to pump the patient's blood outside of the body to oxygenate it. It is used to treat people with profound heart or lung failure. Tubes often remain inserted for weeks or months, and bleeding at the sites of insertion can lead to infection.

The researchers have received funding from the MIT Deshpande Center to help them work toward commercializing their glue, which they hope to do after performing additional preclinical studies in animal models. The research was also funded by the National Institutes of Health, the National Science Foundation, the U.S. Army Research Office through MIT's Institute for Soldier Nanotechnologies, and the Zoll Foundation.


Related Links
MIT News Office
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
DARPA to develop novel therapeutics for multi-drug resistant microbial infections
Washington DC (SPX) Aug 06, 2021
DARPA has selected three performer teams to support the Harnessing Enzymatic Activity for Lifesaving Remedies (HEALR) program. Groups from Yale University, University of Washington, and Broad Institute plan to utilize a new therapeutic approach and novel protein degradation strategies/modalities to permit a flexible and rapid response for targeting emerging microbial threats. These research teams plan to leverage different approaches to tackle these challenges: + The Yale team will focus on ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Life in space: Preparing for an increasingly tangible reality

Boeing delays key uncrewed test flight to ISS

Nauka Module incident caused by software failure

Russia to stop using ISS by 2028, create own National Space Station

SPACE MEDICINE
German startups launch mini-rocket challenge to SpaceX and co.

Hermeus fully-funded to flight with US Air Force Partnership

Finding the cause of a fatal problem in rocket engine combustors

Rocket tanks of carbon fibre reinforced plastic proven possible

SPACE MEDICINE
Aviation Week awards NASA's Ingenuity Mars Helicopter with laureate

North-By-Northwest for Ingenuity's 11th Flight

Science in motion for ExoMars twin rover

Earthly rocks point way to water hidden on Mars

SPACE MEDICINE
Shanxi company helps astronauts keep fit in space

China's space propaganda blitz endures at slick new planetarium

How Chinese astronauts stay healthy in space

China's five-star red flag flies proudly on red planet

SPACE MEDICINE
Skykraft to begin launch of space-based air traffic management constellation

Next batch of OneWeb satellites set to launch August 20

Iridium granted trio of regulatory approvals in Japan

Inmarsat unveils the communications network of the future

SPACE MEDICINE
Experiment bound for Space Station turns down the heat

DARPA selects research teams to enable quantum shift in spectrum sensing

End tax breaks for gaming firms, says Chinese state media

The truth about space traffic management

SPACE MEDICINE
Small force, big effect: How the planets could influence the sun

Astronomers show how planets form in binary systems without getting crushed

Galileo Project to search for ET artifacts in galactic space

From the sun to the stars: A journey of exoplanet discovery begins

SPACE MEDICINE
Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission

Juno tunes into Jovian radio triggered by Jupiter's volcanic moon Io

Ride with Juno as it flies past Jupiter and Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.