. 24/7 Space News .
EXO WORLDS
Baked meteorites yield clues to planetary atmospheres
by Tim Stephens for UCSC News
Santa Cruz CA (SPX) Apr 16, 2021

Assistant Professor Myriam Telus and graduate student Maggie Thompson in the lab where they performed meteorite outgassing experiments. (Photo by Jeremy Colvin)

In a novel laboratory investigation of the initial atmospheres of Earth-like rocky planets, researchers at UC Santa Cruz heated pristine meteorite samples in a high-temperature furnace and analyzed the gases released.

Their results, published April 15 in Nature Astronomy, suggest that the initial atmospheres of terrestrial planets may differ significantly from many of the common assumptions used in theoretical models of planetary atmospheres.

"This information will be important when we start being able to observe exoplanet atmospheres with new telescopes and advanced instrumentation," said first author Maggie Thompson, a graduate student in astronomy and astrophysics at UC Santa Cruz.

The early atmospheres of rocky planets are thought to form mostly from gases released from the surface of the planet as a result of the intense heating during the accretion of planetary building blocks and later volcanic activity early in the planet's development.

"When the building blocks of a planet are coming together, the material is heated and gases are produced, and if the planet is large enough the gases will be retained as an atmosphere," explained coauthor Myriam Telus, assistant professor of Earth and planetary sciences at UC Santa Cruz. "We're trying to simulate in the laboratory this very early process when a planet's atmosphere is forming so we can put some experimental constraints on that story."

The researchers analyzed three meteorites of a type known as CM-type carbonaceous chondrites, which have a composition considered representative of the material from which the sun and planets formed.

"These meteorites are left over materials from the building blocks that went into forming the planets in our solar system," Thompson said. "Chondrites are different from other types of meteorites in that they didn't get hot enough to melt, so they have held onto some of the more primitive components that can tell us about the composition of the solar system around the time of planet formation."

Working with materials scientists in the physics department, the researchers set up a furnace connected to a mass spectrometer and a vacuum system. As the meteorite samples were heated to 1200 degrees Celsius, the system analyzed the volatile gases produced from the minerals in the sample. Water vapor was the dominant gas, with significant amounts of carbon monoxide and carbon dioxide, and smaller amounts of hydrogen and hydrogen sulfide gases also released.

According to Telus, models of planetary atmospheres often assume solar abundances-that is, a composition similar to the sun and therefore dominated by hydrogen and helium.

"Based on outgassing from meteorites, however, you would expect water vapor to be the dominant gas, followed by carbon monoxide and carbon dioxide," she said. "Using solar abundances is fine for large, Jupiter-size planets that acquire their atmospheres from the solar nebula, but smaller planets are thought to get their atmospheres more from outgassing."

The researchers compared their results with the predictions from chemical equilibrium models based on the composition of the meteorites. "Qualitatively, we get pretty similar results to what the chemical equilibrium models predict should be outgassed, but there are also some differences," Thompson said. "You need experiments to see what actually happens in practice. We want to do this for a wide variety of meteorites to provide better constraints for the theoretical models of exoplanetary atmospheres."

Other researchers have done heating experiments with meteorites, but those studies were for other purposes and used different methods. "A lot of people are interested in what happens when meteorites enter Earth's atmosphere, so those kinds of studies were not done with this framework in mind to understand outgassing," Thompson said.

The three meteorites analyzed for this study were the Murchison chondrite, which fell in Australia in 1969; Jbilet Winselwan, collected in Western Sahara in 2013; and Aguas Zarcas, which fell in Costa Rica in 2019.

"It may seem arbitrary to use meteorites from our solar system to understand exoplanets around other stars, but studies of other stars are finding that this type of material is actually pretty common around other stars," Telus noted.

The investigation brought together researchers from three departments at UCSC: Astronomy and Astrophysics, Earth and Planetary Sciences, and Physics. In addition to Thompson and Telus, the coauthors of the paper include astrophysicist Jonathan Fortney and physicists Toyanath Joshi and David Lederman at UC Santa Cruz, and Laura Schaefer at Stanford University. This research was supported by NASA and the ARCS Foundation.


Related Links
News at UCSC
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Amounts of organic molecules in planetary systems differ from early on
Tokyo, Japan (SPX) Apr 11, 2021
An international group of scientists led by the RIKEN Cluster for Pioneering Research have studied the chemical composition of 50 protoplanetary-disk forming regions in the Perseus Molecular Cloud, and found that despite being in the same cloud, the amounts of complex organic molecules they contain are quite different. Interestingly, the chemically rich young disks have similar compositions of organic molecules. These findings raise an important question: do solar-like systems share a common chemistry a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Biden proposes 6.3% boost for NASA in budget proposal

Liftoff! Pioneers of space

Astronauts need a fridge

All aboard! Next stop space...

EXO WORLDS
DLR is creating the rocket fuels of the future

Phantom Space raises $5M in seed funding to for space transportation concept

Blue Origin launches what may be final test flight before carrying people

NASA chooses SpaceX to take humans back to Moon

EXO WORLDS
Work progresses toward Ingenuity's First Flight on Mars

NASA delays Mars helicopter flight again for software update

CO2 mitigation on Earth and magnesium civilization on Mars

NASA delays Mars copter flight for tech check

EXO WORLDS
Chinese rocket for space station mission arrives at launch site

Ningbo to build $3.05b rocket launchpad site

China advances space cooperation in 2020: blue book

China selects astronauts for space station program

EXO WORLDS
India's telecom regulator assessing Starlink system before accepting beta

UK space firm In-Space Missions Limited Announces Major Expansion And Job Creation Plans

China to develop aerospace as strategic emerging industry

US space employment, investments resist pandemic in 2020, continue to climb in 2021

EXO WORLDS
Sotheby's sees $16.8 million in first NFT sale

Google unveils $2bn data hub in Poland

Northrop Grumman and Intelsat make history with docking of 2nd Mission Extension Vehicle

New laser to help clear the sky of space debris

EXO WORLDS
Study warns of 'oxygen false positives' in search for signs of life on other planets

Crustal mineralogy drives microbe diversity beneath Earth's surface

Amounts of organic molecules in planetary systems differ from early on

Long-awaited review reveals journey of water from interstellar clouds to habitable worlds

EXO WORLDS
New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered

SwRI scientists discover a new auroral feature on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.