24/7 Space News
TIME AND SPACE
Astrophysicists use AI to precisely calculate Universe's 'settings'
illustration only
Astrophysicists use AI to precisely calculate Universe's 'settings'
by Thomas Sumner for SF News
New York NY (SPX) Aug 27, 2024

The standard model of the universe relies on just six numbers. Using a new approach powered by artificial intelligence, researchers at the Flatiron Institute and their colleagues extracted information hidden in the distribution of galaxies to estimate the values of five of these so-called cosmological parameters with incredible precision.

The results were a significant improvement over the values produced by previous methods. Compared to conventional techniques using the same galaxy data, the approach yielded less than half the uncertainty for the parameter describing the clumpiness of the universe's matter. The AI-powered method also closely agreed with estimates of the cosmological parameters based on observations of other phenomena, such as the universe's oldest light.

The researchers present their method, the Simulation-Based Inference of Galaxies (or SimBIG), in a series of recent papers, including a new study published August 21 in Nature Astronomy.

Generating tighter constraints on the parameters while using the same data will be crucial to studying everything from the composition of dark matter to the nature of the dark energy driving the universe apart, says study co-author Shirley Ho, a group leader at the Flatiron Institute's Center for Computational Astrophysics (CCA) in New York City. That's especially true as new surveys of the cosmos come online over the next few years, she says.

"Each of these surveys costs hundreds of millions to billions of dollars," Ho says. "The main reason these surveys exist is because we want to understand these cosmological parameters better. So if you think about it in a very practical sense, these parameters are worth tens of millions of dollars each. You want the best analysis you can to extract as much knowledge out of these surveys as possible and push the boundaries of our understanding of the universe."

The six cosmological parameters describe the amount of ordinary matter, dark matter and dark energy in the universe and the conditions following the Big Bang, such as the opacity of the newborn universe as it cooled and whether mass in the cosmos is spread out or in big clumps. The parameters "are essentially the 'settings' of the universe that determine how it operates on the largest scales," says Liam Parker, co-author of the Nature Astronomy study and a research analyst at the CCA.

One of the most important ways cosmologists calculate the parameters is by studying the clustering of the universe's galaxies. Previously, these analyses only looked at the large-scale distribution of galaxies.

"We haven't been able to go down to small scales," says ChangHoon Hahn, an associate research scholar at Princeton University and lead author of the Nature Astronomy study. "For a couple of years now, we've known that there's additional information there; we just didn't have a good way of extracting it."

Hahn proposed a way to leverage AI to extract that small-scale information. His plan had two phases. First, he and his colleagues would train an AI model to determine the values of the cosmological parameters based on the appearance of simulated universes. Then they'd show their model actual galaxy distribution observations.

Hahn, Ho, Parker and their colleagues trained their model by showing it 2,000 box-shaped universes from the CCA-developed Quijote simulation suite, with each universe created using different values for the cosmological parameters. The researchers even made the 2,000 universes appear like data generated by galaxy surveys - including flaws from the atmosphere and the telescopes themselves - to give the model realistic practice. "That's a large number of simulations, but it's a manageable amount," Hahn says. "If you didn't have the machine learning, you'd need hundreds of thousands."

By ingesting the simulations, the model learned over time how the values of the cosmological parameters correlate with small-scale differences in the clustering of galaxies, such as the distance between individual pairs of galaxies. SimBIG also learned how to extract information from the bigger-picture arrangement of the universe's galaxies by looking at three or more galaxies at a time and analyzing the shapes created between them, like long, stretched triangles or squat equilateral triangles.

With the model trained, the researchers presented it with 109,636 real galaxies measured by the Baryon Oscillation Spectroscopic Survey. As they hoped, the model leveraged small-scale and large-scale details in the data to boost the precision of its cosmological parameter estimates. Those estimates were so precise that they were equivalent to a traditional analysis using around four times as many galaxies. That's important, Ho says, because the universe only has so many galaxies. By getting higher precision with less data, SimBIG can push the limits of what's possible.

One exciting application of that precision, Hahn says, will be the cosmological crisis known as the Hubble tension. The tension arises from mismatched estimates of the Hubble constant, which describes how quickly everything in the universe is spreading out.

Calculating the Hubble constant requires estimating the universe's size using 'cosmic rulers.' Estimates based on the distance to exploding stars called supernovae in distant galaxies are around 10 percent higher than those based on the spacing of fluctuations in the universe's oldest light.

New surveys coming online in the next few years will capture more of the universe's history. Pairing data from those surveys with SimBIG will better reveal the extent of the Hubble tension, and whether the mismatch can be resolved or if it necessitates a revised model of the universe, Hahn says. "If we measure the quantities very precisely and can firmly say that there is a tension, that could reveal new physics about dark energy and the expansion of the universe," he says.

Hahn, Ho and Parker worked on the Nature Astronomy SimBIG study alongside Michael Eickenberg of the Flatiron Institute's Center for Computational Mathematics (CCM), Pablo Lemos of the CCA, Chirag Modi of the CCA and the CCM, Bruno Regaldo-Saint Blancard of the CCM, Simons Foundation president David Spergel, Jiamin Hou of the University of Florida, Elena Massara of the University of Waterloo, and Azadeh Moradinezhad Dizgah of the University of Geneva.

Research Report:Cosmological constraints from non-Gaussian and nonlinear galaxy clustering using the SimBIG inference framework

Related Links
Simons Foundation
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Early galaxies were not too big for their britches after all
Austin TX (SPX) Aug 27, 2024
When astronomers got their first glimpses of galaxies in the early universe from NASA's James Webb Space Telescope, they were expecting to find galactic pipsqueaks, but instead they found what appeared to be a bevy of Olympic bodybuilders. Some galaxies appeared to have grown so massive, so quickly, that simulations could not account for them. Some researchers suggested this meant that something might be wrong with the theory that explains what the universe is made of and how it has evolved since the bi ... read more

TIME AND SPACE
NASA shares reduced Crew-9 team that will return stranded astronauts from ISS

Blue Origin completes latest space tourism flight

NASA says Boeing's Starliner will return to Earth uncrewed on Sept. 6

NASA's Advanced Solar Sail Successfully Deploys in Space

TIME AND SPACE
SpaceX's Falcon 9 rocket grounded pending mishap investigation

SpaceX launches back-to-back Starlink flights after FAA lifts ban on Falcon fleet

NASA and Boeing Prepare for Uncrewed Starliner Return Mission

Virgin Galactic SpaceshipTwo crash litigation

TIME AND SPACE
Martian Ice Caps Reveal Insights into Ancient Climate Shifts

Perseverance Kicks off the Crater Rim Campaign

Study identifies key materials for shielding astronauts from Mars radiation

The means for mapping Martian meteorites

TIME AND SPACE
Shenzhou-18 Crew Tests Fire Alarms and Conducts Medical Procedures in Space

Astronauts on Tiangong Space Station Complete Fire Safety Drill

Shenzhou XVIII Crew Conducts Emergency Drill on Tiangong Space Station

Beijing Unveils 'Rocket Street' to Boost Commercial Space Sector

TIME AND SPACE
Global space industry to exceed $6.1 trillion by 2064

UK Space Agency funds innovative satellite data projects to boost UK businesses

Advanced Control Strategy Enables Effective Surrounding of Noncooperative Targets by Spacecraft Formations

Loft Orbital and Marlan Space launch Orbitworks to make satellites in the Middle East

TIME AND SPACE
GomSpace's Arctic satellite mission concludes successfully after 6 years

Salsa Satellite's reentry to be observed live from the sky

Cluster concludes with controlled reentry over South Pacific

Beyond Gravity joins MDA AURORATM supply chain with constellation computers

TIME AND SPACE
Florida Tech Astrobiologist explores likelihood of life originating on Earth

SETI launches low-frequency search for extraterrestrial technology in distant galaxies

Locked in a glacier, viruses adapted to survive extreme weather

Citizen scientists confirm new warm Jovian-class exoplanet

TIME AND SPACE
Juice trajectory reset with historic Lunar-Earth flyby

NASA's Juno Mission Maps Jupiter's Radiation Using Danish Technology

Juice captures striking image of Moon during flyby

Ariel's Carbon Dioxide Indicates Potential Subsurface Ocean on Uranus' Moon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.