. 24/7 Space News .
TIME AND SPACE
Astronomers reveal remarkable simulations of the early universe
by Staff Writers
Boston MA (SPX) Mar 25, 2022

File illustration.w

It looks like fireflies flickering in the darkness. Slowly, more and more amass, lighting up the screen in large chunks and clusters. But this is not a video about insects. It's a simulation of the early universe, a time after the Big Bang when the cosmos transformed from a place of utter darkness to a radiant, light-filled environment.

The stunning video is part of a large suite of simulations described in a series of three papers accepted to the Monthly Notices of the Royal Astronomical Society. Created by researchers at the Center for Astrophysics | Harvard and Smithsonian, the Massachusetts Institute of Technology and the Max Planck Institute for Astrophysics, the simulations represent a monumental advancement in simulating the formation of the first galaxies and reionization - the process by which neutral hydrogen atoms in space were transformed into positively charged, or ionized, hydrogen, allowing light to spread throughout the universe.

The simulated period, known as the epoch of reionization, took place some 13 billion years ago and was challenging to reconstruct, as it involves immensely complicated, chaotic interactions, including those between gravity, gas and radiation, or light.

"Most astronomers don't have labs to conduct experiments in. The scales of space and time are too large, so the only way we can do experiments is on computers," explains Rahul Kannan, an astrophysicist at the Center for Astrophysics and the lead author of the first paper in the series. "We are able to take basic physics equations and governing theoretical models to simulate what happened in the early universe."

The team's simulations - named Thesan after the Etruscan goddess of dawn - resolve interactions in the early universe with the highest detail and over the largest volume of any previous simulation. Physics in the early universe are captured down to scales that are a million times smaller than the simulated regions, providing unprecedented detail on properties of early galaxies and how light from these galaxies impacted gas.

The team accomplishes this by combining a realistic model of galaxy formation with a new algorithm that tracks how light interacts with gas, along with a model for cosmic dust.

With Thesan, researchers can simulate a piece of our universe spanning over 300 million light years across. The team can run the simulation forward in time to track and visualize the first appearance and evolution of hundreds of thousands of galaxies within this space, beginning around 400,000 years after the Big Bang, and through the first billion years.

The simulations reveal a gradual change in the universe from complete darkness to light.

"It's a bit like water in ice cube trays; when you put it in the freezer, it does take time, but after a while it starts to freeze on the edges and then slowly creeps in," says study co-author Aaron Smith, a NASA Einstein Fellow in MIT's Kavli Institute for Astrophysics and Space Research. "This was the same situation in the early universe - it was a neutral, dark cosmos that became bright and ionized as light began to emerge from the first galaxies."

The simulations were created to prepare for observations from the James Webb Space Telescope (JWST), which will be able to peer further back in time -approximately 13.5 billion years - than predecessors like the Hubble Space Telescope.

"A lot of telescopes coming online, like the JWST, are specifically designed to study this epoch," Kannan says. "That's where our simulations come in; they are going to help us interpret real observations of this period and understand what we're seeing."

Real telescope observations and data will soon be compared to Thesan simulations, the team explains.

"And that's the interesting part," says study co-author Mark Vogelsberger, an associate professor of physics at MIT. "Either our Thesan simulations and model will agree with what JWST finds, which would confirm our picture of the universe, or there will be a significant disagreement showing that our understanding of the early universe is wrong."

The team, however, won't know how various aspects of their model fares until the first observations roll in, which will cover a wide range of topics, including galaxy properties and the absorption and escape of light in the early universe.

"We have developed simulations based on what we know," Kannan says. "But while the scientific community has learned a lot in recent years, there is still quite a bit of uncertainty, especially in these early times when the universe was very young."

The simulations were created using one of the world's largest supercomputers, the SuperMUC-NG, over the course of 30 million CPU-hours. The same simulations would have required more than 3,500 years to complete on a normal computer.

Additional scientists who make up the Thesan team are Lars Hernquist of the CfA; and Enrico Garaldi, Ruediger Pakmor and Volker Springel of the Max Planck Institute for Astrophysics.


Related Links
Center for Astrophysics | Harvard and Smithsonian
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
New evidence proves acceleration of quasar outflows at scale of tens of parsecs
Hefei, China (SPX) Feb 28, 2022
Dr. HE Zhicheng and his coworkers from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences created a new way to measure the physical properties of galactic ionized gas, and discovered the acceleration of quasar outflows at the scale of tens of parsecs for the first time. Their paper was published on Science Advances According to modern theories on galactic formation and evolution, the mechanism of Active Galactic Nuclei (AGN) feedback suggests that the gigan ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Lettuce could protect astronauts' bones on Mars trip

SENER completes hard capture system for universal docking mechanism

Developing design tools for outer space structures

Chef Jose Andres plans paella dinner for Axiom space voyage in April

TIME AND SPACE
All-private Axiom mission to ISS could launch as early as April 3

Rocket Lab confirms next launch and updates on Q1 Revenue Guidance

Rocket Lab to Launch Three Demonstration Satellites for E-Space

Space X's Crew-4 Dragon capsule named 'Freedom'

TIME AND SPACE
Next steps for ExoMars with the rover ready

Sols 3425-3427: Vuggy Buggy

China releases images of Martian dust taken by Tianwen-1 orbiter

Sample Tally for the Crater Floor Campaign

TIME AND SPACE
China's Tianzhou-2 cargo craft leaves space station core module

China's space station to support large-scale scientific research

Chief designer details China's future lunar missions

China plans more planetary endeavors: scientist

TIME AND SPACE
SES adds satellite to extend services across Europe, Africa and Asia

Tailwind completes Terran Orbital acquisition process

High Throughput Satellites set to boom

Viasat, Inmarsat to boost UK space industry investments

TIME AND SPACE
NASA researcher finding ways to turn down the heat in cities

Surface simulation lab launches new chapter in Australian space research

Neuraspace raises funding to prevent satellite collisions

US sending radar-jamming planes to Germany to bolster NATO: Pentagon

TIME AND SPACE
Methane could be the first detectable indication of life beyond Earth

NASA confirms more than 5,000 planets outside the solar system

Scientists unlock mystery rooted in the deepest past of evolution

New insight into the possible origins of life

TIME AND SPACE
Chaos terrains on Europa could be shuttling oxygen to ocean

Searching for Planet Nine

NASA begins assembly of Europa Clipper

NASA starts building Europa Clipper to investigate icy, ocean moon of Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.