. 24/7 Space News .
STELLAR CHEMISTRY
Astronomers detect most energetic outflow from a distant quasar
by Staff Writers
Hilo HI (SPX) Apr 15, 2020

The image at left shows an artist's conception of the central portion of the galaxy that hosts the quasar SDSS J135246.37+423923.5 viewed at optical wavelengths. Thick winds obscure our view, and imprint signatures of the energetic outflow on the SDSS spectrum. The image at right shows the same artist's view at infrared wavelengths, as seen by the Gemini GNIRS detector. The thick outflow is transparent at infrared wavelengths, giving us a clear line of sight to the quasar. The infrared spectrum yields the quasar redshift, and from that reference frame, we measured the record-breaking outflow velocity.

Researchers using the Gemini North telescope on Hawai'i's Maunakea have detected the most energetic wind from any quasar ever measured. This outflow, which is travelling at nearly 13% of the speed of light, carries enough energy to dramatically impact star formation across an entire galaxy. The extragalactic tempest lay hidden in plain sight for 15 years before being unveiled by innovative computer modeling and new data from the international Gemini Observatory.

The most energetic wind from a quasar has been revealed by a team of astronomers using observations from the international Gemini Observatory, a program of NSF's NOIRLab. This powerful outflow is moving into its host galaxy at almost 13% of the speed of light, and stems from a quasar known as SDSS J135246.37+423923.5 which lies roughly 60 billion light-years from Earth.

"While high-velocity winds have previously been observed in quasars, these have been thin and wispy, carrying only a relatively small amount of mass," explains Sarah Gallagher, an astronomer at Western University (Canada) who led the Gemini observations. "The outflow from this quasar, in comparison, sweeps along a tremendous amount of mass at incredible speeds. This wind is crazy powerful, and we don't know how the quasar can launch something so substantial". [1]

As well as measuring the outflow from SDSS J135246.37+423923.5, the team was also able to infer the mass of the supermassive black hole powering the quasar. This monstrous object is 8.6 billion times as massive as the Sun -about 2000 times the mass of the black hole in the center of our Milky Way and 50% more massive than the well-known black hole in the galaxy Messier 87.

This result is published in the Astrophysical Journal and the quasar studied here now holds the record for the most energetic quasar wind measured to date, with a wind more energetic than those recently reported in a study of 13 quasars [2].

Despite its mass and energetic outflow, the discovery of this powerhouse languished in a quasar survey for 15 years before the combination of Gemini data and the team's innovative computer modeling method allowed it to be studied in detail.

"We were shocked - this isn't a new quasar, but no one knew how amazing it was until the team got the Gemini spectra," explains Karen Leighly, an astronomer at the University of Oklahoma who was one of the scientific leads for this research. "These objects were too hard to study before our team developed our methodology and had the data we needed, and now it looks like they might be the most interesting kind of windy quasars to study."

Quasars - also known as quasi-stellar objects - are a type of extraordinarily luminous astrophysical object residing in the centres of massive galaxies [3]. Consisting of a supermassive black hole surrounded by a glowing disk of gas, quasars can outshine all the stars in their host galaxy and can drive winds powerful enough to influence entire galaxies [4].

"Some quasar-driven winds have enough energy to sweep the material from a galaxy that is needed to form stars and thus quench star formation," explains Hyunseop (Joseph) Choi, a graduate student at the University of Oklahoma and the first author of the scientific paper on this discovery. "We studied a particularly windy quasar, SDSS J135246.37+423923.5, whose outflow is so thick that it's difficult to detect the signature of the quasar itself at visible wavelengths."

Despite the obstruction, the team was able to get a clear view of the quasar using the Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North to observe at infrared wavelengths. Using a combination of high-quality spectra from Gemini and a pioneering computer modeling approach, the astronomers uncovered the nature of the outflow from the object - which proved, remarkably, to be more energetic than any quasar outflow previously measured.

The team's discovery raises important questions, and also suggests there could be more of these quasars waiting to be found.

We don't know how many more of these extraordinary objects are in our quasar catalogs that we just don't know about yet," concludes Choi "Since automated software generally identifies quasars by strong emission lines or blue color - two properties our object lacks - there could be more of these quasars with tremendously powerful outflows hidden away in our surveys."

"This extraordinary discovery was made possible with the resources provided by the international Gemini Observatory; the discovery opens new windows and opportunities to explore the Universe further in the years to come," said Martin Still, an astronomy program director at the National Science Foundation, which funds Gemini Observatory from the U.S. as part of an international collaboration.

"The Gemini Observatory continues to advance our knowledge of the Universe by providing the international science community with forefront access to telescope instrumentation and facilities."

Research paper


Related Links
Association Of Universities For Research In Astronomy (AURA)
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Wind speed on a brown dwarf measured for first time
Pasadena CA (JPL) Apr 10, 2020
For the first time, scientists have directly measured wind speed on a brown dwarf, an object larger than Jupiter (the largest planet in our solar system) but not quite massive enough to become a star. To achieve the finding, they used a new method that could also be applied to learn about the atmospheres of gas-dominated planets outside our solar system. Described in a paper in the journal Science, the work combines observations by a group of radio telescopes with data from NASA's recently retired ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA awards propellants and life support services contract

NASA astronaut Chris Cassidy, crewmates arrive safely at ISS

Bartolomeo connected to Columbus

NASA, SpaceX team up for emergency egress exercise

STELLAR CHEMISTRY
RocketShip delivers Delta IV Heavy boosters at VAFB

Space Force announces its first pandemic-related launch delay

Pandemic delays New Zealand launch of three US Intel satellites

Russia space chief spars with Elon Musk over launch pricing

STELLAR CHEMISTRY
Mars Helicopter attached to Perseverance Mars rover

Choosing rocks on Mars to bring to Earth

NASA's Perseverance Mars rover gets its wheels and air brakes

Bacteria in rock deep under sea inspire new search for life on Mars

STELLAR CHEMISTRY
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

STELLAR CHEMISTRY
NewSpace Philosophies: Who, How, What?

Hong Kong Aerospace Technology Group prepares to launch their first satellite "Golden Bauhinia"

OneWeb goes bankrupt

Trump issues Executive Order supporting Space Resources utlization

STELLAR CHEMISTRY
Russian cosmonauts begin 3D bioprinting experiment on ISS

General Atomics opens new spacecraft development and test facility in Colorado

Spacecraft is designed to survive fire, surfs its own wave

Swinging for the Space Fence

STELLAR CHEMISTRY
Origin of the first known interstellar object 'Oumuamua

NASA selects early-stage technology concepts for new, continued study

Sellafield research uncovers microbial life in fuel ponds

Salmon parasite is world's first non-oxygen breathing animal

STELLAR CHEMISTRY
Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.