. 24/7 Space News .
TIME AND SPACE
Astronomers catch a black hole shredding a star to pieces
by Staff Writers
College Park MD (SPX) Oct 22, 2015


This illustration of a recently observed tidal disruption, named ASASSN-14li, shows a disk of stellar debris around the black hole at the upper left. A long tail of ejected stellar debris extends to the right, far from the black hole. The X-ray spectrum obtained with NASA's Chandra X-ray Observatory (seen in the inset box) and ESA's XMM-Newton satellite both show clear evidence for dips in X-ray intensity over a narrow range of wavelengths. These dips are shifted toward bluer wavelengths than expected, providing evidence for a wind blowing away from the black hole. Image courtesy NASA/CXC/M. Weiss. For a larger version of this image please go here.

When a star comes too close to a black hole, the intense gravity of the black hole results in tidal forces that can rip the star apart. In these events, called tidal disruptions, some of the stellar debris is flung outward at high speeds, while the rest falls toward the black hole. This causes a distinct X-ray flare that can last for years.

A team of astronomers, including several from the University of Maryland, has observed a tidal disruption event in a galaxy that lies about 290 million light years from Earth. The event is the closest tidal disruption discovered in about a decade, and is described in a paper published in the October 22, 2015 issue of the journal Nature.

"These results support some of our newest ideas for the structure and evolution of tidal disruption events," said study co-author Coleman Miller, professor of astronomy at UMD and director of the Joint Space-Science Institute. "In the future, tidal disruptions can provide us with laboratories to study the effects of extreme gravity."

The optical light All-Sky Automated Survey for Supernovae (ASAS-SN) originally discovered the tidal disruption, known as ASASSN-14li, in November 2014. The event occurred near a supermassive black hole at the center of the galaxy PGC 043234. Further study using NASA's Chandra X-ray Observatory, NASA's Swift Gamma-ray Burst Explorer and the European Space Agency's XMM-Newton satellite provided a clearer picture by analyzing the tidal disruption's X-ray emissions.

"We have seen evidence for a handful of tidal disruptions over the years and have developed a lot of ideas of what goes on," said lead author Jon Miller, a professor of astronomy at the University of Michigan. "This one is the best chance we have had so far to really understand what happens when a black hole shreds a star."

After a star is destroyed by a tidal disruption, the black hole's strong gravitational forces draw in most of the star's remains. Friction heats this infalling debris, generating huge amounts of X-ray radiation. Following this surge of X-rays, the amount of light decreases as the stellar material falls beyond the black hole's event horizon--the point beyond which no light or other information can escape.

Gas often falls toward a black hole by spiraling inward and forming a disk. But the process that creates these disk structures, known as accretion disks, has remained a mystery. By observing ASASSN-14li, the team of astronomers was able to witness the formation of an accretion disk as it happened, by looking at the X-ray light at different wavelengths and tracking how those emissions changed over time.

The researchers determined that most of the X-rays are produced by material that is extremely close to the black hole. In fact, the brightest material might actually occupy the smallest possible stable orbit. But astronomers are equally interested to learn what happens to the gas that doesn't get drawn past the event horizon, but instead is ejected away from the black hole.

"The black hole tears the star apart and starts swallowing material really quickly, but that's not the end of the story," said study co-author Jelle Kaastra, an astronomer at the Institute for Space Research in the Netherlands. "The black hole can't keep up that pace so it expels some of the material outwards."

The X-ray data also suggest the presence of a wind moving away from the black hole, carrying stellar gas outward. However, this wind does not quite move fast enough to escape the black hole's gravitational grasp. A possible explanation for the low speed of this wind is that gas from the disrupted star follows an elliptical orbit around the black hole, and travels slowest when it reaches the greatest distance from the black hole at the far ends of this elliptical orbit.

"This result highlights the importance of multi-wavelength observations," explained study co-author Suvi Gezari, an assistant professor of astronomy at UMD. "Even though the event was discovered with an optical survey telescope, prompt X-ray observations were key in determining the characteristic temperature and radius of the emission and catching the signatures of an outflow."

Astronomers are hoping to find and study more events like ASASSN-14li so they can continue to test theoretical models about how black holes affect their nearby environments, while learning more about what black holes do to any stars or other bodies that wander too close.

The research paper, "Flows of X-ray gas reveal the disruption of a star by a massive black hole," Jon Miller, Jelle Kaastra, Coleman Miller, Mark Reynolds, Gregory Brown, Bradley Cenko, Jeremy Drake, Suvi Gezari, James Guillochon, Kayhan Gultekin, Jimmy Irwin, Andrew Levan, Dipankar Maitra, Peter Maksym, Richard Mushotzky, Paul O'Brien, Frits Paerels, Jelle de Plaa, Enrico Ramirez-Ruiz, Tod Strohmayer and Nial Tanvir, was published October 22, 2015 in the journal Nature.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Maryland
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Shedding light on the growth of stars and black holes
Southampton. UK (SPX) Oct 15, 2015
A Southampton astronomer is among a team of international researchers whose work has revealed a surprising similarity between the way in which astronomical objects grow including black holes, white dwarfs and young stars. Christian Knigge, Professor in Physics and Astronomy, worked with colleagues from around the world to study one of the most important, but least understood processes in a ... read more


TIME AND SPACE
Europe-Russia Lunar mission will make them friends again

Mound near lunar south pole formed by unique volcanic process

Lunar Pox

Space startup confirms plans for robotic moon landings

TIME AND SPACE
Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

Opportunity parked for solar panels to charge up for winter

TIME AND SPACE
Hold on to your hoverboard: 'Back to the Future' is now

Journaling: Astronauts chronicle missions

Brands eye big bucks with 'Back to the Future' nostalgia

Russian Cosmonauts Taste 160 Meals Ahead of Space Station Expedition

TIME AND SPACE
China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

TIME AND SPACE
RSC Energia patented inflatable space module for ISS

Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

TIME AND SPACE
ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

China puts new communication satellite into orbit for HK company

ISRO to Launch 6 Singapore Satellites in December

TIME AND SPACE
Cosmic 'Death Star' is destroying a planet

Most earth-like worlds have yet to be born, according to theoretical study

Airbus DS ready to start testing exoplanet tracker CHEOPS

Hubble Telescope Spots Mysterious Space Objects

TIME AND SPACE
U.S. Air Force long-range radar systems reach full operational capability

A 'hot' new development for ultracold magnetic sensors

Mother-of-pearl's genesis identified in mineral's transformation

Exciting breakthrough in 2-D lasers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.