. 24/7 Space News .
IRON AND ICE
Asteroid sharing Earth's orbit discovered - could it help future space missions?
by David Rothery | Professor of Planetary Geosciences, The Open University
Milton Keynes UK (SPX) Feb 09, 2022

Where 2020 XL5 would appear in the dawn sky if we could see it with the naked eye from Chile. NOIRLab/NSF/AURA/J. da Silva, CC BY-NC-SA

Research has shown that the Earth trails an asteroid barely a kilometre across in its orbit about the Sun - only the second such body to have ever been spotted. It goes round the Sun on average two months ahead of the Earth, dancing around in front like an excited herald of our coming.

This object, known as 2020 XL5, was first spotted in December 2020 using Pan-STARRS telescopes on the summit of Haleakala on the Hawaiian island of Maui. But determination of its orbit required follow-up observations using the 4.1-metre SOAR (Southern Astrophysical Research) telescope in Chile.

Based on this data, a team led by planetary scientist Toni Santana-Ros of the University of Alicante in Spain has now announced that 2020 XL5 is trapped for at least the next several thousand years in an orbit about one of the Sun-Earth "Lagrange points". These are where the gravitational forces of the Earth and the Sun balance to create stable locations. It means the object keeps pace with the Earth as it goes round the Sun.

Lagrange points exist around other planets too, they are equilibrium points for any objects with small mass under the influence of any two much more massive bodies. There are three such points on the Sun-Earth line (L1, L2 and L3, see image below), first discovered mathematically by the Swiss mathematician Leonhard Euler. Spacecraft, such as James Webb Space Telecope (at L2) and DSCOVR (at L1), can be maintained there with only a small expenditure of fuel.

Two other points, L4 and L5, were discovered in 1772 by Euler's student Joseph-Louis Lagrange. Here, a small-mass object making an equilateral triangle with Sun and Earth is in a stable equilibrium. These points are 60 degrees ahead of and 60 degrees behind the Earth, and because 60 degrees (see image above) is one-sixth of the Earth's orbit this amounts to two months separation.

If a small-mass object is perturbed so as to move away from L4 or L5, the combined gravity of the Sun and Earth draws it back - bending its path into a stable orbit around the Lagrange point that looks kidney bean shaped relative to Earth.

XL5, but no fireball
2020 XL5 is being called a Trojan companion to the Earth by analogy with Jupiter's Trojan asteroids. Jupiter shares its orbit with nearly ten thousand known asteroids, half of them ahead of Jupiter, and half behind. The first of those, discovered in 1906, was named Achilles after a central character at the siege of Troy in Homer's Iliad.

A convention developed to name each one after a hero from the same story. Only those trailing Jupiter (clustered at the Sun-Jupiter L5 position) are given Trojan names, such as Hektor, whereas those ahead of Jupiter (at L4) are give Greek names, such as Achilles. Collectively, whether at L4 or L5 they are all referred to as Trojans.

Small numbers of Trojan asteroids have now been discovered associated with Neptune (23), Uranus (1) and Mars (9). But 2020 XL5 is only the second Trojan companion of Earth to have been found. The first, 2010 TK7, was discovered in 2010. That's only about 300 metres across, so 2020 XL5 considerably outmasses it at about 1.2km across.

There are probably many more Earth Trojans, but they are hard to discover from Earth because they can only ever be seen fairly low in the pre-dawn sky if at L4 like both 2010 TK7 and 2020 XL5, or just after sunset if at L5 (where none have yet been found). Their orbits are not stable over millions of years, so they can't be remnants that have been there ever since Earth's formation but must have drifted into place later.

However, the SOAR observations were able to show that 2020 XL5 appears to be a carbon-rich asteroid (called C-type). So it is a sample of what the Solar System was built from, and it would be instructive to study Earth's Trojan companions in more detail as examples of unaltered material.

But could we mine them or use them in other ways? Santana-Ros notes that 2020 XL5 has an orbit that bobs above and below Earth's orbital plane. This means that to manoeuvre a spacecraft into a rendezvous (to orbit or land on it) would require considerable velocity change. That would probably need too much fuel to be practical. The same applies to 2010 TK7.

However, the study points out that if other Earth Trojans are found in orbits that are less tilted, these might make handy bases as staging posts for exploration of the Solar System. They'd be much easier to take off from than from the Earth or Moon because their gravity is so slight. They could even be a source of resources that we could mine.


Related Links
The Open University
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Youngest pair of asteroids in solar system detected
Flagstaff AZ (SPX) Feb 07, 2022
An international team of astronomers has discovered a pair of asteroids that split off from their parent body a mere 300 years ago. The duo is exceptional because it is the youngest known "asteroid pair" by at least a factor of ten, it passes close to Earth's orbit, and it has properties that are hard to explain given its young age. The majority of asteroids in our solar system reside in the area between the orbits of Mars and Jupiter known as the main asteroid belt. Closer to home, scientists hav ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Global patent filings surged to record high in 2021: UN

China joins industrial design IP treaty

Northrop Grumman's 17th Resupply Mission packed with science and technology for ISS

Astronaut hits 300 days in space, on way to break NASA record

IRON AND ICE
ESA's Vega rocket marks ten years with countdown to more powerful successor

Rocket Lab brings forward launch for earth imaging company Synspective

ESA selects payloads for Ariane 6 first flight

SpaceX Starship orbital flight likely this year

IRON AND ICE
How easy is it to turn water into oxygen on Mars

Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars

In Place at Rimplas

Sols 3383-3384: Picking Our Way to the Pediment

IRON AND ICE
China to make 6 human spaceflights, rocket's maiden flight in 2022: blue book

China welcomes cooperation on space endeavors

China Focus: China to explore lunar polar regions, mulling human landing: white paper

China to boost satellite services, space technology application: white paper

IRON AND ICE
UK candidates make it through to next round of European Space Agency's astronaut call

Russian Soyuz rocket launches 34 new UK satellites

Protecting dark and quiet skies from satellite constellation interference

Solar storm knocks out 40 SpaceX Starlink satellites

IRON AND ICE
Sidus Space books slew of news orders for hardware and services

China hits back at US after satellite near-misses

Taiwan eases nuclear-accident food import ban from Japan

Coca-Cola says 25% of packaging will be reusable by 2030

IRON AND ICE
New planet detected around star closest to the Sun

New chemical pathway allows for Peptides to form on cosmic dust grains

Planetary bodies observed in habitable zone of dead star

Warps drive disruptions in planet formation in young solar systems

IRON AND ICE
NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter

Juno and Hubble data reveal electromagnetic 'tug-of-war' lights up Jupiter's upper atmosphere

Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.