. 24/7 Space News .
STELLAR CHEMISTRY
As Clouds Fall Apart, A New Star Is Born
by Staff Writers
Heidelberg, Germany (SPX) Jan 25, 2019

Image of the massive star cluster NGC 3603, obtained with the Very Large Telescope. It probably has evolved in the same way as the one just forming in G351.77-0.54, the object depicted in this work.

Using the ALMA observatory in Chile, a group of astronomers led by MPIA's Henrik Beuther has made the most detailed observation yet of the way that a giant gas cloud fragments into dense cores, which then act as the birthplaces of stars. The astronomers found that the mechanisms for fragmentation are fairly straightforward, resulting from the combination of the cloud's pressure and gravity. More complex features, such as magnetic lines or turbulence, play a smaller role than previously thought.

Stars are born when giant clouds of gas and dust collapse. Whenever one of the collapsing regions becomes hot and dense enough for nuclear fusion to set in, a star is born. For massive stars, i.e., those stars that exhibit more than eight times the mass of the Sun, that is only part of the picture, though. The biggest stars in the universe are not born singly. They are born from massive clouds of molecular gas, which then form a cascade of fragments, with many of the fragments giving birth to a star.

Astronomers have long wondered whether this fragmentation-mode of forming stars requires different physical mechanisms than for lower-mass stars. Proposals include turbulent gas motion, which could destabilize a region and lead to quicker collapse, or magnetic fields that could stabilize and thus delay collapse.

The different mechanisms should leave telltale traces in regions where multiple stars are forming. The collapse that leads to the formation of high-mass stars takes place on a hierarchy of different levels. On the largest scales, star formation involves giant molecular clouds, which consist mostly of hydrogen gas and can reach sizes between a few dozen and more than a hundred light-years across.

Within those clouds are slightly denser clumps, typically a few light-years across. Each clump contains one or more dense cores, less than a fifth of a light-year in diameter. Within each core, collapse leads to the formation of either a single star or multiple stars. Together, the stars produced in the cores of a single clump will form a star cluster.

Telltale Scales of Fragmentation
The scales of this fragmentation at multiple levels depend on the mechanisms involved. The simplest model can be written down using no more than high school physics: An ideal gas has a pressure that depends on its temperature and density.

In a simplified gas cloud, assumed to have constant density, that pressure must be strong enough everywhere to balance the force of gravity (given by Newton's law of gravity) - even in the center of the cloud, where the inward gravitation-induced push of all the surrounding matter is strongest. Write this condition down, and you will find that any such constant-density cloud can only have a maximum size. If a cloud is larger than this maximum, which is called the Jeans length, the cloud will fragment and collapse.

Is the fragmentation of young massive clusters really dominated by these comparatively straightforward processes? It doesn't need to be, and some astronomers have constructed much more complex scenarios, which include the influence of turbulent gas motion and magnetic field lines. These additional mechanisms change the conditions for cloud stability, and typically increase the scales of the different types of fragment.

Different predictions for cloud sizes offer a way of testing the simple physics scenario against its more complex competitors. That is what Henrik Beuther and his colleagues set out to do when they observed the star formation region G351.77-0.54 in the Southern constellation Scorpius (The Scorpion).

Previous observations had indicated that in this region, fragmentation could be caught in the act. But none of these observations had been powerful enough to show the smallest scale of interest for answering the question of fragmentation scales: the protostellar cores, let alone their substructure.

ALMA Takes the Most Detailed Look Yet
Beuther and his colleagues were able to do more. They used the ALMA Observatory in the Atacama Desert in Chile. ALMA combines the simultaneous observations of up to 66 radio telescopes to achieve a resolution of down to 20 milli-arcseconds, which allows astronomers to discern details more than ten times smaller than with any previous radio telescope, and at unrivalled sensitivity - a combination that has already led to a number of breakthrough observations also in other fields.

Beuther and his colleagues used ALMA to study the high-mass star-forming region G351.77-0.54 down to sub-core scales smaller than 50 astronomical units (in other words, less than 50 times the average distance between the Earth and the Sun). As Beuther says: "This is a prime example of how technology drives astronomical progress. We could not have obtained our results without the unprecedented spatial resolution and sensitivity of ALMA."

Their results, together with earlier studies of the same cloud at larger scales, indicate that thermal gas physics is winning the day, even when it comes to very massive stars: Both the sizes of clumps within the cloud and, as the new observations show, of cores within the clumps and even of some core substructures are as predicted by Jeans length calculations, with no need for additional ingredients. Beuther comments: "In our case, the same physics provides a uniform description. Fragmentation from the largest to the smallest scales seems to be governed by the same physical processes."

Small Accretion Disks: A New Challenge
Simplicity is always a boon for scientific descriptions. However, the same observations also provided a discovery that will keep astronomers on their collective toes. In addition to studying fragmentation, Beuther et al. had been looking to unravel the structure of nascent stars ("protostars") within the cloud. Astronomers expect such a protostar to be surrounded by a swirling disk of gas, called the accretion disk. From the inner disk of the rim, gas falls onto the growing star, increasing its mass.

In addition, magnetic fields produced by the motion of ionized gas and the gas itself interact to produce tightly focused streams called jets, which shoot out some of the matter into space perpendicular to that disk. Submillimeter light from those regions carries telltale signs ("Doppler-broadening of spectral lines") of the motion of dust, which in turn traces the motion of gas.

But where Beuther and his collaborators had hoped for a clear signature from an accretion disk, instead, he found mainly the signature of jets, cutting a comparatively smooth path through the surrounding gas. Evidently, the accretion disks are even smaller than astronomers had expected - a challenge for future observations at even greater spatial resolution.

Research Report: "High-Mass Star Formation at Sub-50 AU Scales,"


Related Links
Max Planck Institute For Astronomy
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Last Breath of a Dying Star
Garching, Germany (SPX) Jan 23, 2019
The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time - around 10,000 years, a blink of an eye in astronomical terms. ESO's Very Large Telescope captured this shell of glowing ionised gas - the last breath of the dying star whose simmering remains are visible at the heart of this image. As the gaseous shell of this planetary nebula expands and grows dimmer, it will slowly disappear from sight. An evanescent shell of glowing gas spreading into ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Duration of UAE Astronaut's Mission on Board ISS Reduced to 8 Days

NASA Announces Updated Crew Assignment for Boeing Flight Test

Blue Origin to make 10th flight test of space tourist rocket

China is growing crops on the far side of the moon

STELLAR CHEMISTRY
United Launch Alliance Successfully Launches NROL-71 in Support of National Security

Jeff Bezos's Blue Origin rocket makes 10th flight test

Air Force and its mission partners successfully launch NROL71

Countdown for launch of DRDO satellite starts

STELLAR CHEMISTRY
ExoMars software passes ESA Mars Yard driving test

Dust storm activity appears to pick up south of Opportunity

Team selected by Canadian Space Agency to study Mars minerals

UK tests self driving robots for Mars

STELLAR CHEMISTRY
China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

STELLAR CHEMISTRY
mu Space unveils plan to bid for space exploration projects

Airbus wins DARPA contract to develop smallsat bus for Blackjack program

A new era of global aircraft surveillance is on the horizon as Aireon completes system deployment

How much do European citizens know about space?

STELLAR CHEMISTRY
2D magnetism reaches a new milestone

New insights into magnetic quantum effects in solids

Winning ideas for 3D printing on the Moon

New thermoelectric material delivers record performance

STELLAR CHEMISTRY
Where Is Earth's Submoon?

Planetary collision that formed the Moon made life possible on Earth

Astronomers find star material could be building block of life

Double star system flips planet-forming disk into pole position

STELLAR CHEMISTRY
Juno's Latest Flyby of Jupiter Captures Two Massive Storms

Outer Solar System Orbits Not Likely Caused by "Planet Nine"

Scientist Anticipated "Snowman" Asteroid Appearance

New Ultima Thule Discoveries from NASA's New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.