. 24/7 Space News .
STELLAR CHEMISTRY
Are there anti-stars around us
by Staff Writers
Washington DC (SPX) May 04, 2021

Position in the sky of the different candidates of the Fermi catalog. The background map shows the minimum brightness of an anti-star for it to be observed by Fermi. The clear parts represent the parts of the sky where the observations are the easiest.

What if some of the antimatter that was thought to have disappeared was hiding around us in the form of anti-stars? Researchers from the Institute for Research in Astrophysics and Planetology are using the Fermi gamma-ray space telescope to put the most constraining limits ever on this hypothesis. The results of their work were published on April 20, 2021 in Physical Review D.

What is antimatter? Often associated with the world of science fiction, antimatter does exist. It is observed in physics laboratories and in space. It is a state symmetrical to the matter we know. The laws of physics known to date tell us that the Universe should contain equal amounts of matter and antimatter. However, antimatter is only observed today at the trace level, and research suggests that the entire Cosmos would be devoid of it. This is currently considered as one of the greatest mysteries of the Universe.

Nevertheless, the AMS particle detector on board the International Space Station recently seems to indicate that there could be more antimatter around us than we thought. This could be hiding in the vicinity of the solar system in the form of unlikely objects: stars made of antimatter, or anti-stars. The existence of such objects would have serious consequences on the way we conceive the Universe, but how to test this hypothesis?

It is known that the collision between antimatter and matter produces gamma rays, the most energetic form of radiation. This is why, in a paper published in Physical Review D, IRAP researchers used ten years of data from the Fermi gamma-ray space telescope to estimate the maximum number of anti-stars in our Galaxy. They were able to isolate, in the catalog of gamma-ray sources found by Fermi, fourteen candidates whose emission properties are comparable to those expected for antistars.

However, the nature of these sources is still uncertain. It is much more likely that they are actually other types of well-established gamma-ray emitters, such as pulsars or black holes. The IRAP team then estimated the maximum number of anti-stars that could exist in our Galaxy, obtaining the strongest constraints ever.

By imagining that they are distributed like ordinary stars, mostly in the galactic disk, they were able to establish that there is at most one anti-star for every 300 000 ordinary stars. Nevertheless, they also showed that old antistars, whose origin would go back to the beginnings of the Universe, could more easily hide from gamma-ray telescopes in the halo around the Galaxy.

Research Report: "Constraints on the antistar fraction in the Solar System neighborhood from the 10-year Fermi Large Area Telescope gamma-ray source catalog"


Related Links
Institute for Research in Astrophysics and Planetology
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Star light, star bright as explained by math
Thuwal, Saudi Arabia (SPX) Apr 27, 2021
Not all stars shine brightly all the time. Some have a brightness that changes rhythmically due to cyclical phenomena like passing planets or the tug of other stars. Others show a slow change in this periodicity over time that can be difficult to discern or capture mathematically. KAUST's Soumya Das and Marc Genton have now developed a method to bring this evolving periodicity within the framework of mathematically "cyclostationary" processes. "It can be difficult to explain the variations of the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Boeing's troubled Starliner capsule now aiming for July launch

Space aged: wine matured aboard ISS expected to sell for $1mn

Blue Origin will fly first crew to space in July

US Aerospace Company Blue Origin to Begin Selling Tickets for Tourist Trips in Space

STELLAR CHEMISTRY
Touchdown! SpaceX successfully lands Starship rocket

SpaceX to launch lunar mission paid with cryptocurrency Dogecoin

Protests over SpaceX contract put timetable for lunar return in limbo

NASA announces launch plans for new Dream Chaser spaceplane

STELLAR CHEMISTRY
NASA's Ingenuity Helicopter to begin new demonstration phase

Perseverance rover captures sound of Ingenuity flying on Mars

Volcanoes on Mars could be active, raise possibility of recent habitable conditions

Why Ingenuity's fifth flight will be different

STELLAR CHEMISTRY
China wants to send spacecraft to edge of solar system to mark 100th year of PRC

China's space station takes shared future concept to space

China launches space station core module Tianhe

Core capsule launched into orbit

STELLAR CHEMISTRY
Egos clash in Bezos and Musk space race

SpaceX launches 60 Starlink satellites from Florida

Spacecraft magnetic valve used to fill drinks

Lithuania to become ESA Associate Member state

STELLAR CHEMISTRY
Large Chinese rocket segment disintegrates over Indian Ocean

3D printing could be used in search for black holes

US watching Chinese rocket's erratic re-entry: Pentagon

ESA to build second deep space dish in Australia

STELLAR CHEMISTRY
UBCO researcher uses geology to help astronomers find habitable planets

Hubble Watches How a Giant Planet Grows

Coldplay beam new song into space in chat with French astronaut

Astronomers detect first ever hydroxyl molecule signature in an exoplanet atmosphere

STELLAR CHEMISTRY
Juice arrives at ESA's technical heart

New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.