. 24/7 Space News .
Ancient Redwoods Of The Far North

a time of plenty for mammals

Baltimore - Mar 21, 2002
Once upon a time, Axel Heilberg Island was a very strange place. Located within the Arctic Circle north of mainland Canada, a full 8/9ths of the way from the equator to the North Pole, the uninhabited Canadian island is far enough north to make Iceland look like a great spot for a winter getaway, and today there's not much to it beyond miles of rocks, ice, a few mosses, and many fossils.

The fossils tell of a different era, though, an odd time about 45 million years ago when Axel Heilberg, still as close to the North Pole as it is now, was covered in a forest of redwood-like trees known as metasequoias.

Hope Jahren, an assistant professor of earth and planetary sciences in the Krieger School of Arts and Sciences at The Johns Hopkins University, recently published results that partially demystified Axel Heilberg's vanished forests. Jahren and colleague Leo Sternberg of the University of Miami uncovered evidence that the Axel Heilberg's forests probably received equatorial water and warmth from a prehistoric weather pattern unlike anything in existence today.

Other challenging mysteries remain, including how a forest could develop given the sunlight it would receive on Axel Heilberg. Because of its closeness to the North Pole both now and in the time of the redwoods, Axel Heilberg spends four months of each year in continuous sunlight and four months of each year in continuous darkness.

"We don't have plants that can survive under those conditions today, let alone forests," Jahren says. "For a tree to endure four months of daylight is like you or I going without sleep for four months."

Through a grant from the Andrew Mellon Foundation, Jahren's research group has made three summer visits to Axel Heilberg, excavating hundreds of fossil metasequoias. The fossils are immaculately well-preserved.

"Some of this stuff looks about like driftwood on the beach, but it's 45 million years old," Jahren says. "These fossils are chemically preserved at a level you usually would expect to see in something that's only 1,000 years old."

That's ideal for Jahren, who studies the presence of isotopes of elements like carbon, nitrogen and oxygen in living and fossilized plants. Isotopes are forms of an element that differ only by the addition of one or more subatomic particles known as neutrons. Different isotopes of the same element have different mass, which affects the way plants use them.

Jarhen, the winner of last year's Geological Society of America Donath Medal for most promising young scientist, studies the isotopes to learn more about plants' relationship to weather and climate change. In her group's first major Axel Heilberg results, published in the January issue of the Geological Society's "GSA Today," they measured the presence of isotopes of oxygen and hydrogen in the fossilized metasequoias.

"The wood of any tree growing anywhere records fairly faithfully the oxygen and hydrogen chemistry of the water the plant has access to through precipitation," Jahren explains. "And there's a great deal of difference between the chemistry of water that arrives at a certain location after being transported [in evaporated form] great distances over land versus the chemistry of water that arrives at a place after being transported over water or not being transported very far."

Jahren and co-author Sternberg chemically compared the fossil isotope levels with those found in water in contemporary precipitation patterns over great distances of forested lands in the Amazon. They were able to show that water traveling from near the equator almost due north across the continents to the vicinity of Axel Heilberg would have oxygen and hydrogen isotope signatures that matched those found in the fossils.

While it might seem mind-boggling to have the equator watering the north pole, Jahren notes that other major climatological differences at the time included the lack of a north polar ice cap.

"It's very hard to explain the isotope chemistry of the precipitation using any other model of water transport," Jahren says. "So we think we've basically solved a piece of the puzzle."

As for the other major piece of the puzzle -- survival of the trees through extended periods of light and dark -- Jahren's group is working to see if the isotope chemistry of the fossils can help them learn how the metasequoias' metabolism compared to those of contemporary plants.

"Did they function similarly to how plants function now?" Jahren asks. "Or did they have strategies that plants either no longer have or no longer employ? Were they fundamentally different? These fossils are really forcing us to expand our ideas of how ecosystems can work." Related Links
Johns Hopkins University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Global Observations Key To Understanding Climate
Hobart - Mar 21, 2002
Future rainfall trends in the Australian region and long-term changes in global climate will only be understood once scientists have developed world-wide ocean observing systems, according to the World Climate Research Programme.







  • NASA's Fuse Satellite Lit Again
  • An Early NASA Pioneer Still On The Job In Deep Space
  • Pioneer 10 Returns Science From The Edge Of Sol
  • Distant Pioneer Sought One Last Time

  • Sorting Out Martian Ices
  • Mars Radiation Meter Back Online
  • University Of Dayton Geologist Recreates 'life On Mars' Evidence In Her Laboratory
  • Support For Critical Role Of Carbon Dioxide On Mars Grows

  • New Skies Bird Shipped To Kourou For April launch
  • Boeing Launches NASA Data Bird
  • Boeing Satellite for NASA Scheduled to Launch
  • Atlas 3 Launches EchoStar 7

  • Digital Photos From Solar Airplane To Improve Coffee Harvest
  • Jeppesen To Supply Worldwide Aviation Weather For Merlin Satellite Broadcast Service
  • Jason 1 Ready For Service, Releases First Data
  • Ariane 5 Ready To Launch Climate Monitoring Hub

  • Pluto Flight Plan Trimmed To Save Time, Money and Fuel
  • Nuclear Hammers and Nuclear Hamstrings
  • A Plutonic Commitment To Space Funding
  • Out To The Horizon Of Sol

  • A Bow Shock Near A Young Star
  • NASA Says Its A New Dawn For Discovery
  • A Small Spherical Universe after All?
  • Ulysses Gets A New Partner In The Hunt For The Source Of Gamma-Ray Bursts

  • Moon and Earth Formed out of Identical Material
  • Lunar Soil Yields Evidence About Sun's Dynamic Workings
  • Unique tasks for SMART-1 in exploring the Moon
  • NASA Seeks Berth On India's Moon Mission

  • Europe Pushes Ahead With New GPS System Dubbed Galileo
  • GPS Helps Monitor Athletes at Utah Winter Olympics
  • Boeing Receives GPS IIF Modernization Approval
  • GPS, Other Military Systems Protected By FCC Decision

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement