24/7 Space News
CHIP TECH
Analog and digital: The best of both worlds in one energy-efficient system
By seamlessly integrating ultra-thin, two-dimensional semiconductors with ferroelectric materials, the research, published in Nature Electronics, unveils a novel way to improve energy efficiency and add new functionalities in computing. The new configuration merges traditional digital logic with brain-like analog operations.
Analog and digital: The best of both worlds in one energy-efficient system
by Staff Writers
Lausanne, Switzerland (SPX) Sep 04, 2023

We live in an analog world of continuous information flow that is both processed and stored by our brains at the same time, but our devices process information digitally in the form of discrete binary code, breaking the information into little bits (or bites).

Researchers at EPFL have revealed a pioneering technology that combines the potential of continuous analog processing with the precision of digital devices. By seamlessly integratingultra-thin, two-dimensional semiconductors with ferroelectric materials, the research, published in Nature Electronics, unveils a novel way to improve energy efficiency and add new functionalities in computing. The new configuration merges traditional digital logic with brain-like analog operations.

Faster and more efficient electronics
The innovation from the Nanoelectronics Device Laboratory (Nanolab), in collaboration with Microsystems Laboratory, revolves around a unique combination of materials leading to brain-inspired functions and advanced electronic switches, including the standout negative capacitance Tunnel Field-Effect Transistor (TFET). In the world of electronics, a transistor or "switch" can be likened to a light switch, determining whether current flows (on) or doesn't (off). These are the famous 1s and 0s of binary computer language, and this simple action of turning on and off is integral to nearly every function of our electronic devices, from processing information to storing memory.

The TFET is a special type of switch designed with an energy-conscious future in mind. Unlike conventional transistors that require a certain minimum voltage to turn on, TFETs can operate at significantly lower voltages. This optimized design means they consume considerably less energy when switching, thus significantly reducing the overall power consumption of devices they are integrated into.

According to Professor Adrian Ionescu, head of Nanolab, "Our endeavors represent a significant leap forward in the domain of electronics, having shattered previous performance benchmarks, and is exemplified by the outstanding capabilities of the negative-capacitance tungsten diselenide/tin diselenide TFET and the possibility to create synaptic neuron function within the same technology."

Sadegh Kamaei, a PhD candidate at EPFL, has harnessed the potential of 2D semiconductors and ferroelectric materials within a fully co-integrated electronic system for the first time. The 2D semiconductions can be used for ultra-efficient digital processors whereas the ferroelectric material provides the possibility to continuously process and store memory at the same time. Combining the two materials creates the opportunity to harness the best of the digital and analog capacities of each. Now the light switch from our above analogy is not only more energy efficient, but the light it turns on can burn even brighter.

Kamaei added, "Working with 2D semiconductors and integrating them with ferroelectric materials has been challenging yet immensely rewarding. The potential applications of our findings could redefine how we view and interact with electronic devices in the future."

Blending traditional logic with neuromorphic circuits
Furthermore, the research delves into creating switches similar to biological synapses - the intricate connectors between brain cells - for neuromorphic computing. "The research marks the first-ever co-integration of von Neumann logic circuits and neuromorphic functionalities, charting an exciting course toward the creation of innovative computing architectures characterized by exceptionally low power consumption and hitherto unexplored capabilities of building neuromorphic functions combined with digital information processing," adds Ionescu.

Such advances hint at electronic devices that operate in ways parallel to the human brain, marrying computational speed with processing information in a way that is more in line with human cognition. For instance, neuromorphic systems might excel at tasks that traditional computers struggle with, such as pattern recognition, sensory data processing, or even certain types of learning. This blend of traditional logic with neuromorphic circuits indicates a transformative change with far-reaching implications. The future may well see devices that are not just smarter and faster but exponentially more energy-efficient.

Research Report:Ferroelectric Gating of Two-Dimensional Semiconductors for the Integration of Steep-Slope Logic and Neuromorphic Devices

Related Links
EPFL
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
A simpler way to connect quantum computers
Princeton NJ (SPX) Sep 04, 2023
Researchers have a new way to connect quantum devices over long distances, a necessary step toward allowing the technology to play a role in future communications systems. While today's classical data signals can get amplified across a city or an ocean, quantum signals cannot. They must be repeated in intervals - that is, stopped, copied and passed on by specialized machines called quantum repeaters. Many experts believe these quantum repeaters will play a key role in future communication networks ... read more

CHIP TECH
Station Hosts 11 Crewmates from Five Countries

A multinational crew blasts off from Florida, heading for the International Space Station

NASA challenges students to fly Earth and Space experiments

US seeks to extend China science accord, but only briefly for now

CHIP TECH
Musk threatens to sue anti-defamation group for falling revenue

Benchmark Space Systems cracks code for viable ASCENT propellant

SpaceX sends crew of four to ISS

Rocket Lab Launches 40th Electron Mission, Successfully Flies Reused Engine

CHIP TECH
NASA, Partners study ancient life in Australia to inform Mars search

Martian Tapas With a View: Sols 3926-3927

Delight at Dream Lake

Approaching the Ridgetop - "Bermuda Triangle" Ahead: Sols 3923-3925

CHIP TECH
From rice to quantum gas: China's targets pioneering space research

China to launch "Innovation X Scientific Flight" program, applications open worldwide

Scientists reveal blueprint of China's lunar water-ice probe mission

Shenzhou 15 crew share memorable moments from Tiangong Station mission

CHIP TECH
LeoStella and Hera Systems Establish Strategic Alliance

Viasat provides status update on Inmarsat-6 F2

Momentus announces reverse stock split

Pentagon awards contracts for next 'swarm' of tiny missile defense satellites

CHIP TECH
From art squat to Berlin gentrification lightning rod

US envoy feasts on Fukushima fish, slams China water 'dumps'

Japan PM eats 'safe and delicious' Fukushima fish

Northrop Grumman delivers mini laser to US Government

CHIP TECH
Scientists detect and validate the longest-period exoplanet found with TESS

Accretion disks: How big are they really?

Study explains how part of the nucleolus evolved

Size dependence and the collisional dynamics of protoplanetary dust growth

CHIP TECH
In the service of planetary science, astrophysics and heliophysics

Mysterious Neptune dark spot detected from Earth for the first time

Neptune's Disappearing Clouds Linked to the Solar Cycle

The Road to Jupiter: Two decades of trajectory optimization

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.