. 24/7 Space News .
ENERGY TECH
An innovative process which prevents irreversible energy loss in batteries
by Staff Writers
Seoul, South Korea (SPX) Aug 25, 2021

A KIST researcher conducts an experiment to evaluate high-capacity batteries following prelithiation

When its batteries are fully charged, an electronic device will normally indicate that they are at 100% capacity. However, this value only represents 70-90% of the theoretical energy density that can be stored in the batteries, owing to the permanent loss of Li ions that occurs during the initial charge in the stabilization (formation) stage of battery production. By preventing this initial loss of Li ions, the mileage of electric vehicles (EVs) and usage time of smartphones can be drastically increased.

In an effort to overcome this issue, a joint research team at the Korea Institute of Science and Technology (KIST), led by Dr. Minah Lee from the Center for Energy Storage Research, Dr. Jihyun Hong from the Center for Energy Materials Research, and Dr. Hyangsoo Jeong from the Center for Hydrogen-Fuel Cell Research, has developed an electrode pre-treatment solution capable of minimizing this initial Li ion loss in graphite-silicon oxide (SiOx, 0.5 = x = 1.5) composite anodes. After being dipped in the solution, the anode, which was composed of 50% SiOx, demonstrated negligible Li loss, enabling a full cell to exhibit near-ideal energy density.

While most commercial Li batteries utilize a graphite anode, SiOx has been garnering significant attention as a next-generation material for anodes due to its high capacity, which is 5-10 times greater than graphite. Yet, SiOx also irreversibly consumes three times as much active Li as graphite.

As a result, a composite electrode, consisting of a mixture of graphite and SiOx, is now gaining recognition as an alternative for practical next-generation anodes. However, while there was a corresponding increase in the capacity of graphite-SiOx composite electrodes at higher ratios of SiOx, there was also an increase in loss of initial Li. Consequently, the ratio of SiOx content in a graphite-SiOx composite electrode was limited to 15%, as increasing the ratio to 50% would result in an initial Li loss of 40%.

To simultaneously achieve high capacity and high initial efficiency, scientists proposed various prelithiation methods involving the pre-doping of extra Li into the anode. Dr. Minah Lee's research team at KIST developed a process wherein the electrode is dipped into a unique solution to mitigate Li consumption by the SiOx electrode. The team then applied this process to a graphite-SiOx composite material with significant commercialization potential.

The research team found that the pre-treatment solutions developed previously would cause the unintended insertion of solvent molecules with Li ions into the graphite, owing to the graphite's versatile intercalation capability. This intercalation of large solvent molecules resulted in the structural breakdown of the graphite-SiOx composite electrode.

To prevent electrode failure, the researchers developed a new solution using a weakly solvating solvent to reduce the interaction between the solvent and the Li ions. This solution enabled the selective insertion of Li ions into the active materials, ensuring a stable supply of additional Li to the graphite-SiOx composite electrode.

The initial Li consumption was completely prevented after the graphite-SiOx electrode was immersed in the solution developed by the research team for approximately 1 minute, even at a 50% SiOx ratio. Consequently, the electrode showed a high initial efficiency of nearly 100%, indicating negligible Li loss (= 1%) in the initial charge. Electrodes developed through this process had a capacity 2.6 times higher than conventional graphite anodes, while also maintaining 87.3% of the initial capacity after 250 charge-/discharge cycles.

Dr. Minah Lee from KIST gave the following statement: "As a result of this study, we should be able to increase the SiOx content in graphite-SiOx composite anodes to over 50%, as opposed to the 15% ratio allowed by conventional materials, making it possible to produce lithium ion batteries with a greater capacity and improve the mileage of future EVs." Dr. Jihyun Hong, a co-researcher at KIST, also said, "The technology is safe and suitable for mass production, and therefore is likely to be commercialized."

Research Report: "Weakly Solvating Solution Enables Chemical Prelithiation of Graphite-SiOx Anodes for High-Energy Li-Ion Batteries"


Related Links
Korea Institute of Science and Technology (KIST)
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Smallest biosupercapacitor provides energy for biomedical applications
Chemnitz, Germany (SPX) Aug 24, 2021
The miniaturization of microelectronic sensor technology, microelectronic robots or intravascular implants is progressing rapidly. However, it also poses major challenges for research. One of the biggest is the development of tiny but efficient energy storage devices that enable the operation of autonomously working microsystems - in more and more smaller areas of the human body for example. In addition, these energy storage devices must be bio-compatible if they are to be used in the body at all. Now t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Samsung announces $205 billion investment plan

Can devices that never wear out come into reality?

Roscosmos planning to send another two space tourists into orbit

NASA faces new criticism, possible congressional hearing over spacesuit delays

ENERGY TECH
SpaceX launches Dragon Cargo mission to ISS

SpaceX launch of robotic arm to space station reset for Sunday

Virgin Orbit selects Redwire to provide digital engineering to support rapid development

Gilmour Space signs first European partnership agreement with Exolaunch

ENERGY TECH
China's rover travels over 1 km on Mars

Martian snow is dusty, could potentially melt, new study shows

Blue and Gold satellites headed to Mars in 2024

Curiosity Mars Rover explores a changing landscape

ENERGY TECH
Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

Chinese astronauts to conduct extravehicular activities for second time

Mars mission outcomes to advance space research

ENERGY TECH
OneWeb confirms another successful launch, accelerating business momentum

Russia's Soyuz Spacecraft Launches 34 New OneWeb Satellites Into Orbit

Soyuz launches 34 UK OneWeb satellites

Phantom Space acquires Micro Aerospace Solutions

ENERGY TECH
New technology lays groundwork for large-scale, high-resolution 3D displays

Small structures on a large scale

Department of Energy invests in novel research in high-performance algorithms

Lockheed Martin develops high-performance, low cost hybrid antenna for 5G, radar and remote sensing

ENERGY TECH
Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

Small force, big effect: How the planets could influence the sun

Astronomers find evidence of possible life-sustaining planet

ENERGY TECH
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.