. 24/7 Space News .
EARTH OBSERVATION
An airborne stratospheric observatory measures concentration of atomic oxygen directly
by Staff Writers
Bonn, Germany (SPX) Jan 27, 2021

GREAT is the first instrument to directly measure the concentration of atomic oxygen in the mesosphere and lower thermosphere. The first measurements were conducted during a SOFIA flight along the west coast of the USA.

The German REceiver for Astronomy at Terahertz frequencies (GREAT) spectrometer on board the Stratospheric Observatory for Infrared Astronomy (SOFIA) has enabled direct, high-resolution spectral measurements of the concentration of atomic oxygen in the mesosphere and lower thermosphere regions of Earth's atmosphere.

Scientists from the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR), the Max Planck Institute for Radio Astronomy (MPIfRA) and the University of Cologne are investigating a new approach to making direct measurements in the terahertz range, preparing the way for the development of future space instruments. The results have now been published in the Nature journal Communications Earth and Environment.

Atomic oxygen is one of the main components of the mesosphere (the middle of the five layers of Earth's atmosphere) as well as the lower part of the thermosphere. This oxygen-rich region of the atmosphere extends from an altitude of approximately 80 kilometres up to over 300 kilometres.

There, the oxygen content regulates photochemical processes and the Earth-atmosphere energy balance; it is an important indicator of dynamic shifts in the atmosphere. The GREAT terahertz spectrometer has enabled the concentration of atomic oxygen to be measured directly and at a high spectral resolution for the first time.

Various methods had been used for this purpose in the past. For example, atomic oxygen concentration has been determined indirectly based on observations of sky glow at night or measurements of molecules involved in photochemical processes with atomic oxygen. Scientists made these calculations using several satellite instruments. However, these methods are indirect and based on models and assumptions.

"The findings do not always agree, especially when they are obtained using different instruments," says Heinz-Wilhelm Hubers, Head of the DLR Institute of Optical Sensor Systems.

"Thanks to the GREAT terahertz spectrometer, we have been able to investigate an alternative approach that allows us to conduct direct measurements." GREAT's high spectral resolution enables us to make high-precision measurements of the 4.7 terahertz transition, from which altitude profiles can be derived for the concentration of atomic oxygen.

The first spectrally resolved measurements for this transition were revealed during a SOFIA flight in January 2015 along the west coast of the USA. These data are a byproduct of astronomical observations in the same frequency band.

"The measurements with GREAT have shown that our measurements agree well with atmospheric models derived from satellite observations," says Hubers.

Developing terahertz technology for future space instruments
Based on the technology used in the GREAT instrument, future high-resolution terahertz spectrometers may also be suitable for use in space. The European Space Agency (ESA) is actively promoting this advancement of terahertz technology for future satellite missions.


Related Links
Max Planck Institute for Radio Astronomy
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Tiny particles formed from trace gases can seed open ocean clouds
Washington DC (UPI) Jan 22, 2021
It doesn't take much to seed a cloud in the atmosphere above the open ocean, according to a new study published Friday in the journal Nature Communications. When sunlight reacts with trace gas molecules in the marine boundary layer, the half-a-mile-thick layer of atmosphere that sits above the open ocean, tiny aerosols are forged - a process called new particle formation. "When we say 'new particle formation,' we're talking about individual gas molecules, sometimes just a few atoms in s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Bridenstine leaves NASA, calls for unity in space, science efforts

Tourism on track in the world's largest cave

Pandemic drags German admin out of the 1980s

Glenn's Power Systems Facility has supported Station research for decades

EARTH OBSERVATION
SpaceX launches first Starlink satellite mission of 2021

New Year, New Record for Australia's Gilmour Space

Florida's Space Coast the Number 1 Launch Site in the World in 2020

Branson's Virgin Orbit reaches space for first time

EARTH OBSERVATION
Six things to know about NASA's Mars helicopter on its way to Mars

Crater study offers window on temperatures 3.5 billion years ago

Mystery of Martian glaciers revealed

Analyzing different solid states of water on other planets and moons

EARTH OBSERVATION
China's space station core module, cargo craft pass factory review

Major space station components cleared for operations

Chinese space enterprise gears up for record-breaking 40-plus launches in 2021

China's space achievements out of this world

EARTH OBSERVATION
China launches new mobile telecommunication satellite

Astronauts to boost European connectivity

Statement on Satellite Constellations by German Astronomical Society

France to Invest $121.5Mln in Space Projects Over Next 2 Years, Macron Says

EARTH OBSERVATION
GameStop extends wild ride on Wall Street

Physicists propose a new theory to explain one dimensional quantum liquids formation

U.S. military uses 3D printing to make N95 respirators

Sintavia expands rocket manufacturing with two M4K-4 Printers from AMCM GmbH

EARTH OBSERVATION
Simulating evolution to understand a hidden switch

A 'super-puff' planet like no other

Astronomers finally measure polarized light from exoplanet

A rocky planet around one of our galaxy's oldest stars

EARTH OBSERVATION
Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.