Subscribe free to our newsletters via your
. 24/7 Space News .




FLORA AND FAUNA
Amoeba may offer key clue to photosynthetic evolution
by Staff Writers
Stanford, CA (SPX) Mar 01, 2012


Nowack and Grossman focused their research on a type of amoeba called Paulinella chromatophora, which contains two photosynthetic compartments that also originated from an endosymbiotic cyanobacterium, but that represent an earlier stage in the formation of a fully evolved organelle.

The major difference between plant and animal cells is the photosynthetic process, which converts light energy into chemical energy. When light isn't available, energy is generated by breaking down carbohydrates and sugars, just as it is in animal and some bacterial cells.

Two cellular organelles are responsible for these two processes: the chloroplasts for photosynthesis and the mitochondria for sugar breakdown. New research from Carnegie's Eva Nowack and Arthur Grossman has opened a window into the early stages of chloroplast evolution. Their work is published online by the Proceedings of the National Academy of Sciences in the week of February 27-March 2.

It is widely accepted that chloroplasts originated from photosynthetic, single-celled bacteria called cyanobacteria, which were engulfed by a more complex, non-photosynthetic cell more than 1.5 billion years ago.

While the relationship between the two organisms was originally symbiotic, over evolutionary time the cyanobacterium transferred most of its genetic information to the nucleus of the host organism, transforming the original cyanobacterium into a chloroplast that is no longer able to survive without its host.

A similar process resulted in the creation of mitochondria.

To sustain the function of the organelle, proteins encoded by the transferred genes are synthesized in the cytoplasm, or cell's interior, and then imported back into the organelle.

In most systems that have been studied, the transport of proteins into the chloroplast occurs through a multi-protein import complex that enables the proteins to pass through the envelope membranes that surround the chloroplast.

Clearly the events that gave rise to chloroplasts and mitochondria changed the world forever. But it is difficult to research the process by which this happened because it took place so long ago. One strategy used to elucidate the way in which this process evolved has relied on identifying organisms for which the events that resulted in the conversion of a bacterium into a host-dependent organelle occurred more recently.

Nowack and Grossman focused their research on a type of amoeba called Paulinella chromatophora, which contains two photosynthetic compartments that also originated from an endosymbiotic cyanobacterium, but that represent an earlier stage in the formation of a fully evolved organelle.

These compartments, called chromatophores, transferred more than 30 of the original cyanobacterial genes to the nucleus of the host organism.

While gene transfer has been observed for other bacterial endosymbionts, the function of the transferred genes has been unclear, since it does not appear that the endosymbionts (in contrast to organelles) are equipped to recapture those proteins, because they do not have appropriate protein import machineries.

The Carnegie team honed in on three of the P. chromatophora transferred genes, which encode proteins involved in photosynthesis, a process localized to the chromatophore. They set out to determine whether these proteins are synthesized in the cytoplasm of the amoeba and whether the mature proteins became localized to the chromatophore.

Using an advanced array of research techniques, they were able to determine that these three proteins are synthesized in the cytoplasm and then transported into chromatophores, where they assemble together with other, internally encoded proteins into working protein complexes that are part of the photosynthetic process.

Interestingly, the process by which these proteins are transported into chromatophores may also be novel and involve transit through an organelle called the Golgi apparatus, prior to becoming localized to the chromatophore.

This suggests the occurrence of an initial, rudimentary process for proteins to cross the envelope membrane of the nascent chloroplast. This process ultimately evolved into one that is potentially more sophisticated and that uses specific protein complexes for efficient transport.

"This work demonstrates that P. chromatophora is a potentially powerful model for studying evolutionary processes by which organelles developed," Nowack said.

"Obtaining a comprehensive list of proteins imported into chromatophores, including their functions and origins, as well as understanding the pathway by which these proteins are imported, could provide insight into the mechanism that eukaryotic cells use to 'enslave' bacteria and turn them into organelles such as chloroplasts and mitochondria."

.


Related Links
Carnegie Institution
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Immortal worms defy aging
Nottingham UK (SPX) Mar 01, 2012
Researchers from The University of Nottingham have demonstrated how a species of flatworm overcomes the ageing process to be potentially immortal. The discovery, published in the Proceedings of the National Academy of Sciences, is part of a project funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and Medical Research Council (MRC) and may shed light on the possibiliti ... read more


FLORA AND FAUNA
Scientists Shed Light On Lunar Impact History

China paces to the Moon

SD-built camera spots tiny shifts on moon

Back to the Moon A Modern Redux

FLORA AND FAUNA
Surface of Mars an unlikely place for life after 600 million year drought

Camera on NASA Mars Odyssey Tops Decade of Discovery

Proposed Mars Mission Has New Name

NASA Official Announces Chair of New Mars Program Planning Group

FLORA AND FAUNA
Wish for city of the future takes shape at TED

TED titans see through eyes of young innovators

Technology and creativity go "full spectrum" at TED

Cosmonaut Testing at Star City Deceptively Simple

FLORA AND FAUNA
Launch of China's manned spacecraft Shenzhou-9 scheduled

Shenzhou 9 To Carry 3 Astronauts To Tiangong-1 Space Station

China to launch spacecraft in June: report

Is Shenzhou Unsafe?

FLORA AND FAUNA
Dual - Mode Space Activities

Fifth ATV named after Georges Lemaitre

Space station panel installation delayed

Russian cosmonauts begin ISS spacewalk

FLORA AND FAUNA
SwRI and XCOR agree to pioneering research test flight missions

Rocket launches from Poker Flat Research Range

Private rocket assembled for space launch

Ariane 5 readied for dual-satellite launch fpr Asia-Pacific telco

FLORA AND FAUNA
A Planetary Exo-splosion

Extending the Habitable Zone for Red Dwarf Stars

Earth siblings can be different!

Hubble Reveals a New Class of Extrasolar Planet

FLORA AND FAUNA
VTT scientists revise the 60-year-old definition of surface tension on solids

Radical new 'focus later' camera begins shipping

IBM takes giant step to faster, quantum computers

Tech giants get lecture on perils of gadget worship




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement