. | . |
Aluminum on the way to titanium strength by Staff Writers Moscow, Russia (SPX) Oct 11, 2018
NUST MISIS scientists have proposed a technology that can double the strength of composites obtained by 3D printing from aluminum powder, and advance the characteristics of these products to the quality of titanium alloys: titanium's strength is about six times higher than that of aluminum, but the density of titanium is 1.7 times higher. The developed modifiers for 3D printing can be used in products for the aerospace industry. The developed modifying-precursors, based on nitrides and aluminum oxides and obtained through combustion, have become the basis of the new composite. Two decades ago, molding was considered the only cost-effective way to manufacture bulk products. Today, 3D printers for metal are a worthy competitor to metallurgical methods. 3D printers have a chance to replace traditional methods of metallurgical production in the future. Using additive technologies with 3D printing creates a whole array of advantages, from creating more difficult forms and designs to the technology's cheaper cost and theoretical edge. Today, there are several technologies that are used for printing metal, the main ones being Selective Laser Melting (SLM) and Selective Laser Sintering (SLS). Both of them involve the gradual layering of metal powder "ink", layer by layer, to build a given volume figure. SLS or SLM are additive manufacturing technologies based on layer-by-layer sintering of powder materials using a powerful (up to 500 Watt) laser beam. Titanium is the optimal metal for manufacturing products for the aerospace industry, however it cannot be used in 3D printing because of the fire and explosion hazards of powders. Aluminum is an alternative, as it is lightweight (density 2700 kg/m3) and moldable, having an elasticity modulus of ~70 MPa. This is one of the main requirements of the industry for a metal to be suitable for 3D printing; however aluminum alone is not strong or solid enough: the tensile strength even for the alloy Duralumin is 500 MPa, and its Brinell hardness HB sits at 20 kgf/mm2. The solution on how to strengthen aluminum 3D printing was proposed by the research team led by Professor Alexander Gromov from the NUST MISIS Department for Non-Ferrous Metals and Gold. "We have developed a technology to strengthen the aluminum-matrix composites obtained by 3D printing, and we have obtained innovative precursor-modifiers by burning aluminum powders. Combustion products - nitrides and aluminum oxides - are specifically prepared for sintering branched surfaces with transition nanolayers formed between the particles. It is the special properties and structure of the surface that allows the particles to be firmly attached to the aluminum matrix and, as a result, [doubles] the strength of the obtained composites", said Alexander Gromov, head of the research group. Currently, the team of developers is testing the prototypes with the help of new technology.
University of Toronto chemists advance ability to control chemical reactions Toronto, Canada (SPX) Oct 09, 2018 Scientists at the University of Toronto have found a way to select the outcome of chemical reaction by employing an elusive and long-sought factor known as the 'impact parameter'. The team of U of T chemists, led by Nobel Prize-winning researcher John Polanyi, have found a means to select the impact parameter or miss-distance by which a reagent molecule misses a target molecule, thereby altering the products of chemical reaction. The findings are publishedin Science Advances. "Chemists toss ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |