. 24/7 Space News .
ICE WORLD
Airborne thermometer to measure Arctic temperatures
by Staff Writers
Moscow, Russia (SPX) Jan 11, 2017


Raman scattering. Image courtesy MIPT Press Office. For a larger version of this image please go here.

Russian scientists from the National University of Science and Technology MISiS, MIPT, and Prokhorov General Physics Institute (GPI) of the Russian Academy of Sciences have compared the effectiveness of several techniques of remote water temperature detection based on laser spectroscopy and evaluated various approaches to spectral profile interpretation. The paper detailing the study was published in Optics Letters.

The researchers examined four data processing techniques drawing on the relevant analyses in prior publications. The technique which the authors themselves previously proposed, developed and obtained a patent for proved to be precise up to 0.15 degrees Celsius.

The research findings will support further development of sea surface temperature remote sensing solutions, enabling scientists to keep track of thermal energy flows in hard-to-reach areas such as the Arctic region, where average temperatures are rising approximately twice as fast as they are elsewhere on the planet.

In their study, the scientists focused on Raman spectroscopy, which is based on the phenomenon of Raman scattering discovered in the 1920s. It involves the interaction of a medium with a light wave: The scattered light is modulated by the molecular vibrations of the medium, resulting in the wavelengths of some of the photons being shifted; in other words, some of the scattered light changes its color.

Raman scattering and, by extension, the field of Raman spectroscopy were named after Sir C. V. Raman, an Indian physicist who was awarded a Nobel Prize for the discovery of this effect. Interestingly, Russian scientific literature tends to refer to the same phenomenon as "combination scattering," a term coined to emphasize its independent discovery by Soviet researchers.

"With the climate changing so rapidly, remote sensing of water temperature is a priority, but the radiometry techniques currently in use are only precise up to about a half degree. Raman spectroscopy enables measurements with a much greater precision," claims Mikhail Grishin, one of the authors of the study, a Ph.D. student at MIPT, and a researcher at the Laser Spectroscopy Laboratory of the Wave Research Center at GPI.

The experiment carried out by the scientists involved probing water with a pulsed laser and using a spectrometer to analyze the light that was scattered back. Depending on the temperature of the water, its characteristic OH stretching vibrations spectral band was variably transformed. The scientists needed to find out whether it is possible to establish a clear relationship between water temperature and one of the spectral band parameters.

The scientists examined the temperature dependence of several spectral band parameters (aka metrics), viz., certain parts of the area below the graph, differential spectra (the result of subtraction of two spectra), and the location of the peak of the curve fitting the band spectrum.

Although it proved possible to establish a relationship between water temperature and each of the abovementioned metrics, the estimated temperature measurement accuracy of the respective techniques varied. Statistical analysis of experimental data showed that temperature dependence was most pronounced when the wavelength that corresponds to the peak of the curve fitting the band spectrum was used as a metric. The scientists were granted a patent for the corresponding approach to spectral profile interpretation by the Russian patent office.

Seawater temperatures in the Arctic are currently monitored using a range of techniques including direct measurements made by weather buoys and merchant or research vessels. However, to track the temperature dynamics of sea surface water in real time and over vast areas, it is necessary to make aerial observations using sensing equipment installed on aircraft or satellites, which irradiates the water with a laser and collects the scattered light.

A spatial resolution of less than one kilometer enables researchers to create very detailed temperature maps which can be used to monitor the transfer of heat by ocean currents, predict how fast Arctic ice is going to melt, and make a global climate change forecast. As unmanned aerial vehicles (UAVs) become better, remote sensing equipment should also be improved to be more precise, lightweight, compact, and energy-efficient. The scientists are developing both the software and the laser-detector system.

Vasily Lednev, one of the authors of the study, a leading expert at the Department of Certification and Analytical Control of NUST MISiS, told us how he sees the future of this research: "One of the main hurdles faced in remote sensing of the sea surface is the necessity to calibrate equipment and verify satellite measurement results against contact measurements of seawater parameters (temperature, chlorophyll concentration, etc.).

"The development and design of compact autonomous lidar (laser radar) systems which can be mounted on UAVs will enable us to obtain detailed sea charts featuring a range of water parameters. These lidar systems are also of immediate interest to the study of hard-to-reach and dangerous objects like icebergs or ice shelves."

The average annual changes in the temperature of the world's oceans tend to be very small. It is currently heating up by a mere tenth of a degree every ten years, whereas seasonal temperature variations can amount to several degrees. This means that an error of just half of a degree will cause a significant drop in precision of the overall picture of temperature dynamics that we get. In the case of seasonal measurements, the uncertainty can reach 20 percent or more, while long-term climate trends may remain unidentified due to the measurement error.

The remote-sensing thermometers currently in use operate in the microwave spectral range. Raman scattering spectrometry has a significant advantage over microwave radiometry in that the probing laser radiation falls into the visible (blue-green) part of the spectrum.

Unlike microwave radiation, to which water is almost completely opaque, visible light can penetrate a layer of water that is 1-10 meters thick. With microwave sensing, the data is only available for the 30-micron-thick surface layer whose temperature is significantly affected by the cold Arctic winds.

This gives rise to an error, which is almost entirely avoided in measurements based on Raman scattering. To correct errors of this kind, satellite-based microwave radiometers need to be calibrated against ground-based measurements. By contrast, Raman spectrometry does not face this obstacle and can produce useful data independently from contact observations.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Moscow Institute of Physics and Technology
Beyond the Ice Age






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Radar reveals meltwater's year-round life under Greenland ice
New York NY (SPX) Jan 10, 2017
When summer temperatures rise in Greenland and the melt season begins, water pools on the surface, and sometimes disappears down holes in the ice. That water may eventually reach bedrock, creating a slipperier, faster slide for glaciers. But where does it go once it gets there, and what happens to it in the winter? A new study helps answer these questions. Scientists have been able to obse ... read more


ICE WORLD
Real time imaging and transcriptome analysis of medaka aboard space station

Russian Astronauts to Hold Terminator Experiment in Space

Two US astronauts complete spacewalk to upgrade ISS

The hidden artist of the Soviet space programme

ICE WORLD
Next Cygnus Mission to Station Set for March

Michoud complete stand for testing SLS main fuel tank

Weather delays resumption of SpaceX's rocket launches

Arianespace to launch Intelsat 39

ICE WORLD
HI-SEAS Mission V crew preparing to enter Mars simulation habitat

New Year yields interesting bright soil for Opportunity rover

Hues in a Crater Slope

3-D images reveal features of Martian polar ice caps

ICE WORLD
China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

China Plans to Launch 1st Mars Probe by 2020 - State Council Information Office

ICE WORLD
OneWeb announces key funding from SoftBank Group and other investors

Airbus DS and Energia eye new medium-class satellite platform

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

ICE WORLD
Scientists recreate stellar combustion conditions using compact lasers

3-D printing and nanotechnology, a mighty alliance to detect toxic liquids

MIT scientists create super strong, lightweight 3D graphene

Artisan 3D radar completes sea trials

ICE WORLD
VLT to Search for Planets in Alpha Centauri System

Could dark streaks in Venusian clouds be microbial life

Hubble detects 'exocomets' taking the plunge into a young star

Between a rock and a hard place: can garnet planets be habitable

ICE WORLD
Lowell Observatory to renovate Pluto discovery telescope

How a moon slows the decay of Pluto's atmosphere

Flying observatory makes observations of Jupiter previously only possible from space

York U research identifies icy ridges on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.