. | . |
Abnormally high alcohol and mystery heat source detected on Comet Wirtanen by Staff Writers Maunakea HI (SPX) Jul 01, 2021
Comet 46P/Wirtanen was releasing an unusual amount of alcohol as it made its historic flyby of Earth two and a half years ago. That's one of the findings from the latest published study comet detectives conducted after observing 46P/Wirtanen with W. M. Keck Observatory on Maunakea in Hawai?i. "46P/Wirtanen has one of the highest alcohol-to-aldehyde ratios measured in any comet to date," said Neil Dello Russo, a cometary scientist at Johns Hopkins University Applied Physics Laboratory and co-author of the study. "This tells us information about how carbon, oxygen, and hydrogen molecules were distributed in the early solar system where Wirtanen formed." Keck Observatory data also revealed a strange characteristic. Normally, as comets orbit closer to the Sun, the frozen particles in their nucleus heat up, then boil off, or sublimate, going directly from solid ice to gas, skipping the liquid phase. This process, called outgassing, is what produces the coma - a giant cloak of gas and dust glowing around the comet's nucleus. As the comet gets even closer to the Sun, solar radiation pushes some of the coma away from the comet, creating the tails. With comet 46P/Wirtanen however, the team made a strange discovery: Another process beyond solar radiation is mysteriously heating up the comet. "Interestingly, we found that the temperature measured for water gas in the coma did not decrease significantly with distance from the nucleus, which implies a heating mechanism," said co-author Erika Gibb, professor and chair of the Department of Physics and Astronomy at University of Missouri-St. Louis. Gibb says there are a couple possible explanations. One is a chemical reaction where sunlight may be ionizing some atoms or molecules in the dense coma close to the nucleus, releasing high-velocity electrons. When these super-charged electrons collide with another molecule, they can transfer some of their kinetic energy and heat the water gas in the coma. "Another possibility is there may be solid chunks of ice flying off of 46P/Wirtanen," said Gibb. "We've seen this in some comets visited by spacecraft, notably Hartley 2 during NASA's EPOXI mission. Those ice chunks tumble away from the nucleus and sublimate, releasing energy further out in the coma." This scenario would be consistent with observations of other hyperactive comets like 46P/Wirtanen - a class of comets that release more water than expected if they release all of their gases directly from their icy nuclei as they approach the Sun. The water spews in the form of gas but can condense later into liquid if it were to arrive on a planet's surface. This is why scientists suspect comets, as well as asteroids, may have delivered the water that makes up Earth's oceans. Keck Observatory data did show Comet Wirtanen exhibited relatively more water molecules farther out in the coma after sublimation compared to other molecules - namely ethane, hydrogen cyanide, and acetylene. This suggests that additional water is being released from icy grains in the inner coma, which is a signifcant result coming from a ground-based telescope. Such observations have been made with spacecraft visiting other comets but can be difficult to study from the ground because of interference from water in Earth's atmosphere. To address this, ground-based studies have utilized a technique to target water transitions that are not blocked by the atmosphere; this makes it possible to obtain detailed infrared observations from Keck Observatory that show how the most abundant volatile element is distributed within the coma of a comet.
In the Nick of Time "Our research would not be possible without the efforts of the entire team that completed the NIRSPEC upgrade," said lead author Boncho Bonev, physics research associate professor at American University. "I am so grateful for their tremendous and successful effort to complete NIRSPEC's major upgrade under immense time pressure."
NIRSPEC data show Comet Wirtanen's chemical makeup consists of:
acetylene "Within just 10 to 20 minutes of observing with NIRSPEC, we obtained measurements of the abundances and spatial distributions of the comet's chemical building blocks," said co-author Mohi Saki, a graduate research assistant at the University of Missouri-St. Louis Department of Physics and Astronomy. "Detecting minor species such as ammonia and acetylene can take hours with other instruments, even for comets as bright as 46P/Wirtanen. We can't replicate NIRSPEC's level of sensitivity for minor species with any other near-infrared instrument in such a short time scale."
What's Next "The molecules we focused on had never been studied in the past in this particular comet," said Bonev. "These Keck observations provided one of the very best data sets ever obtained by a ground-based observatory in the class of comets to which 46P/Wirtanen belongs, the so-called Jupiter-family comets. This is important because it will help the science community evaluate whether a spacecraft mission to Wirtanen could yield more valuable insights about the comet and the early solar system." Analyzing the composition of comets is important to understanding the early solar system. These frozen dirtballs of gases, rock, and dust that orbit the Sun are relics of our cosmic past, with ice fossils containing the original minerals from which the solar system formed. Comet scientists are like archeologists, using comets to piece together the solar system's history. "Comet studies like this are exciting because they serve as a launchpad for answering the million dollar question - are we alone?" said Greg Doppmann, staff astronomer and NIRSPEC instrument scientist at Keck Observatory. "The organic compounds on comets tell us what ingredients formed our solar system and served as precursors to life. We can then look for these same prebiotic molecules in other planetary systems, which opens an exciting door to the very real possibility of finding microbial life beyond Earth - not in our kids' lifetimes, but our own lifetime."
Nickel atoms detected in the cold gas around interstellar comet 2I/Borisov Krakow, Poland (SPX) May 20, 2021 Unbound nickel atoms and other heavy elements have been observed in very hot cosmic environments, including the atmospheres of ultra-hot exoplanets and evaporating comets that ventured too close to our Sun or other stars. A new study conducted by JU researchers reveals the presence of nickel atoms in the cold gasses surrounding the interstellar comet 2I/Borisov. The team's finding is being published in Nature on 19 May 2021. Interstellar comets and asteroids are precious to science because, unlike ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |