24/7 Space News
A simulation finds solutions to a central mystery in space physics
Plasma eruptions in near-Earth space
A simulation finds solutions to a central mystery in space physics
by Staff Writers
Helsinki, Finland (SPX) Jun 30, 2023

How are plasma eruptions in near-Earth space formed? Vlasiator, a model designed at the University of Helsinki for simulating near-Earth space, demonstrated that the two central theories on the occurrence of eruptions are simultaneously valid: eruptions are explained by both magnetic reconnection and kinetic instabilities.

Rapid plasma eruptions known as plasmoids take place on the nightside of the magnetosphere. Plasmoids are also associated with the sudden brightening of the aurora. The space physics research group at the University of Helsinki investigates and simulates these difficult-to-predict eruptions in near-Earth space using the Vlasiator model.

"The phenomena associated with plasmoids cause the most intense but the least predictable magnetic disturbances, which can cause, for example, disturbances in electrical grids," says Professor of Computational Space Physics Minna Palmroth from the University of Helsinki.

"These eruptions occur on a daily basis, in varying sizes, in the 'tail' of the magnetosphere."

Palmroth, who was recently awarded the Copernicus Medal, is also the director of the Centre of Excellence in Research of Sustainable Space, and the principal investigator for the Vlasiator simulation.

"The chain of events leading to plasmoids is one of the longest-standing unresolved questions in space physics: solutions have been sought for it since the 1960s," Palmroth says.

Near-Earth space is a unique place for understanding plasma eruptions
Two competing lines of thinking have been proposed to explain the course of events, the first asserting that magnetic reconnection severs a part of the magnetotail into a plasmoid. According to the other explanation, kinetic instabilities disrupt the current sheet (a wide, thin distribution of electric current) maintaining the tail, which eventually results in the ejection of a plasmoid. Arguments about the primacy of these two phenomena have been ongoing for decades.

"It now appears that the causalities are in fact more complex than previously understood," Palmroth says.

The Vlasiator simulation, which requires the processing power of a supercomputer, modelled near-Earth space for the first time in six dimensions and on a scale corresponding to the size of the magnetosphere. The 6D modelling was successful in describing the physics phenomena underlying both paradigms.

"It was a difficult technical challenge that no one else has been able to model," Palmroth says. Behind the achievement is more than 10 years of software development.

Consequently, the study was able to demonstrate that both magnetic reconnection and kinetic instabilities explain the functioning of the magnetotail. The phenomena associated with these seemingly contradictory theories actually both take place, and simultaneously.

The finding helps to understand how plasma eruptions can occur. This helps in designing spacecraft and equipment, observing these events for further research, and improving the predictability of space weather by improving the understanding of near-Earth space.

Research Report:Magnetotail plasma eruptions driven by magnetic reconnection and kinetic instabilities

Related Links
University of Helsinki
Solar Science News at SpaceDaily

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
Sun-watching Proba-3 formation flyers tested for take-off
Paris (ESA) Jun 16, 2023
ESA's pair of Sun-watching Proba-3 satellites have been placed in take-off configuration, one on top of the other, for testing in simulated launch and space conditions at IABG in Germany, ahead of their planned lift-off next year. Proba-3 is made up of two satellites being launched together into orbit for a single mission. The pair will fly in precise formation relative to one another to cast a sustained shadow from the disk-faced 'Occulter' spacecraft to the 'Coronagraph' spacecraft, allowing the ... read more

SpaceX Dragon to return to Earth with experiments, samples from ISS

Virgin Galactic's use of the 'Overview Effect' to promote space tourism is a terrible irony

Diving into practice

Schools, museums, libraries can apply to receive artifacts from NASA

Virginia Tech leads multi-institution research on polymeric solid fuel combustion

Purdue-launched solid rocket motor-maker Adranos flies off with Anduril

Ariane 6 progress toward inaugural flight: ArianeGroup, Les Mureaux, France

France tests hypersonic glider for first time

Up up up and finally over: Sols 3873-3875

Advanced space technology enabling 2024 ESCAPADE mission to Mars

Zhurong rover detects extremely weak magnetic fields on surface of Mars' Utopia Basin

Back on Track: Sols 3871-3872

Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

Three Chinese astronauts return safely to Earth

Scientific experimental samples brought back to Earth, delivered to scientists

AST SpaceMobile and Maritime Launch Services Boost Capital with Stock Offerings

Apex raises $16M in Series A funding

AST SpaceMobile confirms 4G capabilities to everyday smartphones directly from space

Seven US companies collaborate with NASA to advance space capabilities

The chore of packing just got faster and easier

China says critical metals curbs 'not targeting' any country

No additional radiation at cruising altitude off the coast of Brazil

Australia-first communications network paves the way for high-speed data in space

Reconstructing alien astronomers' view of our home galaxy's chemistry

New era of exoplanet discovery begins with images of 'Jupiter's Younger Sibling'

Evidence of the amino acid tryptophan found in space

Searching for an atmosphere on the rocky exoplanet TRAPPIST-1 c

Unveiling Jupiter's upper atmosphere

ASU study: Jupiter's moon Europa may have had a slow evolution

Juno captures lightning bolts above Jupiter's north pole

Colorful Kuiper Belt puzzle solved by UH researchers

Subscribe Free To Our Daily Newsletters

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.