. 24/7 Space News .
SOLAR DAILY
A perfect trap for light
by Staff Writers
Vienna, Austria (SPX) Aug 29, 2022

The "light trap" setup is shown, consisting of a partially transparent mirror, a thin, weak absorber, two converging lenses and a totally reflecting mirror. Normally, most of the incident light beam would be reflected. However, due to precisely calculated interference effects, the incident light beam interferes with the light beam reflected back between the mirrors, so that the reflected light beam is ultimately completely extinguished. The energy of the light is completely sucked up by the thin and weak absorber.

Whether in photosynthesis or in a photovoltaic system: if you want to use light efficiently, you have to absorb it as completely as possible. However, this is difficult if the absorption is to take place in a thin layer of material that normally lets a large part of the light pass through.

Now, research teams from TU Wien and from The Hebrew University of Jerusalem have found a surprising trick that allows a beam of light to be completely absorbed even in the thinnest of layers: They built a "light trap" around the thin layer using mirrors and lenses, in which the light beam is steered in a circle and then superimposed on itself - exactly in such a way that the beam of light blocks itself and can no longer leave the system.

Thus, the light has no choice but to be absorbed by the thin layer - there is no other way out. This absorption-amplification method, which has now been presented in the scientific journal Science, is the result of a fruitful collaboration between the two teams: the approach was suggested by Prof. Ori Katz from The Hebrew University of Jerusalem and conceptualized with Prof. Stefan Rotter from TU Wien; the experiment was carried out in by the lab team in Jerusalem and the theoretical calculations came from the team in Vienna.

Thin layers are transparent to light
"Absorbing light is easy when it hits a solid object," says Prof. Stefan Rotter from the Institute of Theoretical Physics at TU Wien. "A thick black wool jumper can easily absorb light. But in many technical applications, you only have a thin layer of material available and you want the light to be absorbed exactly in this layer."

There have already been attempts to improve the absorption of materials: For example, the material can be placed between two mirrors. The light is reflected back and forth between the two mirrors, passing through the material each time and thus having a greater chance of being absorbed. However, for this purpose, the mirrors must not be perfect - one of them must be partially transparent, otherwise the light cannot penetrate the area between the two mirrors at all. But this also means that whenever the light hits this partially transparent mirror, some of the light is lost.

The light blocks itself
In order to prevent this, it is possible to use the wave properties of light in a sophisticated way. "In our approach, we are able to cancel all back-reflections by wave interference", says Prof. Ori Katz from The Hebrew University of Jerusalem. Helmut Horner, from TU Wien, who dedicated his thesis to this topic, explains: "In our method, too, the light first falls on a partially transparent mirror. If you simply send a laser beam onto this mirror, it is split into two parts: The larger part is reflected, a smaller part penetrates the mirror."

This part of the light beam that penetrates the mirror is now sent through the absorbing material layer and then returned to the partially transparent mirror with lenses and another mirror. "The crucial thing is that the length of this path and the position of the optical elements are adjusted in such a way that the returning light beam (and its multiple reflections between the mirrors) exactly cancels out the light beam reflected directly at the first mirror", say Yevgeny Slobodkin and Gil Weinberg, the graduate students who built the system in Jerusalem.

The two partial beams overlap in such a way that the light blocks itself, so to speak: although the partially transparent mirror alone would actually reflect a large part of the light, this reflection is rendered impossible by the other part of the beam travelling through the system before returning to the partially transparent mirror.

Therefore, the mirror, which used to be partially transparent, now becomes completely transparent for the incident laser beam. This creates a one-way street for the light: the light beam can enter the system, but then it can no longer escape because of the superposition of the reflected portion and the portion guided through the system in a circle. So the light has no choice but to be absorbed - the entire laser beam is swallowed up by a thin layer that would otherwise allow most of the beam to pass through.

A robust phenomenon
"The system has to be tuned exactly to the wavelength you want to absorb," says Stefan Rotter. "But apart from that, there are no limiting requirements. The laser beam doesn't have to have a specific shape, it can be more intense in some places than in others - almost perfect absorption is always achieved."

Not even air turbulence and temperature fluctuations can harm the mechanism, as was shown in experiments conducted at The Hebrew University in Jerusalem. This proves that it is a robust effect that promises a wide range of applications - for example, the presented mechanism could even be well suited to perfectly capture light signals that are distorted during transmission through the Earth's atmosphere. The new approach could also be of great practical use for optimally feeding light waves from weak light sources (such as distant stars) into a detector.

Research Report:Massively degenerate coherent perfect absorber for arbitrary wavefronts


Related Links
Vienna University of Technology
All About Solar Energy at SolarDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR DAILY
From the spare room to outer space: A DIY project that could transform solar power
Melbourne, Australia (SPX) Aug 29, 2022
A do-it-yourself device that started life as a hobby and took off during COVID-19 could help to unlock the next generation of solar energy, including advanced technology for space missions. Dr Jamie Laird, a Research Fellow at the ARC Centre of Excellence in Exciton Science and the University of Melbourne, has invented a new machine for testing the defects in perovskite solar cells, the first of its kind anywhere in the world. Perovskite solar cells can match silicon for efficiency, are chea ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
NASA awards contract to demonstrate trash compacting system for ISS

Boeing eyes February for space capsule's first crewed flight

Voyager logs 45 years in space as NASA's longest mission to date

45 years after launch, NASA's Voyager probes still blazing trails billions of miles away

SOLAR DAILY
Saturn V was loud but didn't melt concrete

NASA scrubs launch of giant Moon rocket, may try again Friday

Maritime Launch to begin construction of Spaceport Nova Scotia

Glenn's legacy of testing spacecraft spans from Apollo to Artemis

SOLAR DAILY
An Unexpected Stop during Sols 3580-3581

New research sheds light on when Mars may have had water

A World of Firsts

Perseverance Makes New Discoveries in Mars' Jezero Crater

SOLAR DAILY
China conducts spaceplane flight test

103rd successful rocket launch breaks record

Chinese space-tracking ship docks at Sri Lanka's Hambantota port

Shenzhou XIV astronauts to conduct their first spacewalk in coming days

SOLAR DAILY
SpaceX and T-Mobile unveil satellite plan to end cellphone 'dead zones'

Introducing Huginn

T-Mobile Takes Coverage Above and Beyond With SpaceX

NASA scientists study how to remove planetary photobombers

SOLAR DAILY
Chinese giant acquires French game studio Quantic Dream

AI spurs scientists to advance materials research

Tencent buys stake in Japanese gaming firm behind Elden Ring

Google's immersive Street View could be glimpse of metaverse

SOLAR DAILY
JWST makes first unequivocal detection of carbon dioxide in an exoplanet atmosphere

An extrasolar world covered in water

Webb detects carbon dioxide in exoplanet atmosphere

Webb telescope finds CO2 for first time in exoplanet atmosphere

SOLAR DAILY
The PI's Perspective: Extending Exploration and Making Distant Discoveries

Uranus to begin reversing path across the night sky on Wednesday

Underwater snow gives clues about Europa's icy shell

Why Jupiter doesn't have rings like Saturn









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.