24/7 Space News
CHIP TECH
A pathway to advanced quantum devices with zinc oxide quantum dots
illustration only
Reuters Events SMR and Advanced Reactor 2025
A pathway to advanced quantum devices with zinc oxide quantum dots
by Riko Seibo
Tokyo, Japan (SPX) Nov 27, 2024

Researchers at Tohoku University have achieved a major advancement in quantum technology by creating electrically defined quantum dots within zinc oxide (ZnO) heterostructures. Their findings, published in Nature Communications on November 7, 2024, highlight zinc oxide's untapped potential for quantum computing applications.

Quantum dots are nanometer-scale semiconductor structures capable of trapping electrons, making them indispensable for quantum computing as they allow precise control over electron behavior. While materials like gallium arsenide (GaAs) and silicon have dominated quantum dot research, zinc oxide, known for its strong electron correlation and excellent spin quantum coherence, had remained largely unexplored for electrically defined quantum dots.

The research team successfully manipulated quantum dots in zinc oxide using fine voltage adjustments, akin to tuning a radio signal. This approach enabled them to observe the Coulomb diamond, a signature feature of quantum dots, shedding light on electron behavior within the material.

"The Coulomb diamond is like a fingerprint that helps identify the unique 'personality' of each quantum dot," explained Tomohiro Otsuka, associate professor at Tohoku University and the study's corresponding author. "By using zinc oxide, we're opening up new frontiers developing efficient and stable qubits, a cornerstone for quantum computing."

A standout discovery was the observation of the Kondo effect in zinc oxide quantum dots. This quantum phenomenon, wherein electron interactions lead to conduction, typically follows specific patterns based on the number of electrons in a dot. However, in zinc oxide, the Kondo effect manifested in unconventional ways, suggesting that the material's strong electron correlation introduces novel behaviors and possibilities for quantum device development.

"The Kondo effect we observed is different from what we typically see in other semiconductors like GaAs," Otsuka added. "This difference could help us better understand electron behavior in this new material and improve our ability to control and manipulate qubits."

Building on these insights, the team aims to translate their discoveries into functional quantum devices, paving the way for further innovations in the field.

Research Report:Parity-independent Kondo effect of correlated electrons in electrostatically defined ZnO quantum dots

Related Links
Tohoku University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Rocket Lab secures $23.9M CHIPS Award to boost semiconductor production
Sydney, Australia (SPX) Nov 26, 2024
Rocket Lab USA, Inc. (Nasdaq: RKLB), a leader in launch services and space systems, has finalized a $23.9 million award from the U.S. Department of Commerce to expand semiconductor manufacturing capabilities at its Albuquerque, New Mexico facility. The facility produces semiconductors for space-grade solar cells and other optoelectronic components critical for national security and commercial applications. Earlier this year, Rocket Lab signed a preliminary terms sheet for funding under the CHIPS a ... read more

CHIP TECH
Aalyria and iSEE join forces to advance space traffic management

Sierra Space advances certification for LIFE 10 space habitat technology

AnalySwift aims to transform spacecraft for secondary uses during extended missions

Navigating the Digital Skies: How Adtech is Revolutionizing Space Tourism Marketing

CHIP TECH
What we know about Russia's Oreshnik missile fired on Ukraine

China tests critical fairing for Long March 10 lunar rocket

PLD Space teams with Deimos to advance GNC system for MIURA 5

Arianespace to launch Exotrail's Spacevan on Ariane 6

CHIP TECH
Making Mars' Moons: Supercomputers Offer 'Disruptive' New Explanation

Have We Been Searching for Life on Mars in the Wrong Way

Curiosity prepares to leave sulfur stones behind for boxwork exploration

USF research delves into volcanic caves for Mars life insights

CHIP TECH
China inflatable space capsule aces orbital test

Tianzhou 7 completes cargo Mission, Tianzhou 8 docks with Tiangong

Zebrafish thrive in space experiment on China's space station

China's commercial space sector expands as firms outline ambitious plans

CHIP TECH
Sidus Space and Reflex Aerospace partner to develop advanced satellite solutions

ESA and Japan expand collaboration in space exploration

Gilmour Space selected to build bus for emissions monitoring satellite

AST SpaceMobile secures launch agreements for global space-based broadband network

CHIP TECH
3D-printing advance mitigates three defects simultaneously for failure-free metal parts

Shape memory alloy antenna redefines communication technology

Impossible objects brings high-speed CBAM 25 series 3D printer to Europe

Tunable ultrasound propagation in microscale metamaterials

CHIP TECH
Young transiting planet reshapes theories of planetary formation

Discovery of a young exoplanet illuminates planet formation

New approach improves models of atmosphere on early Earth, exo-planets

SwRI scientists repurpose chemistry modeling software to study life-supporting conditions on icy moons

CHIP TECH
Europa Clipper deploys instruments on journey to icy moon of Jupiter

Uranus moon Miranda may hold a hidden ocean below its surface

NASA and SpaceX Set for Europa Clipper Launch on October 14

NASA probe Europa Clipper lifts off for Jupiter's icy moon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.