. 24/7 Space News .
ENERGY TECH
A new concept for low-cost batteries
by David L. Chandler for MIT News
Boston MA (SPX) Sep 06, 2022

The three primary constituents of the battery are aluminum (left), sulfur (center), and rock salt crystals (right). All are domestically available Earth-abundant materials not requiring a global supply chain.

As the world builds out ever larger installations of wind and solar power systems, the need is growing fast for economical, large-scale backup systems to provide power when the sun is down and the air is calm. Today's lithium-ion batteries are still too expensive for most such applications, and other options such as pumped hydro require specific topography that's not always available.

Now, researchers at MIT and elsewhere have developed a new kind of battery, made entirely from abundant and inexpensive materials, that could help to fill that gap.

The new battery architecture, which uses aluminum and sulfur as its two electrode materials, with a molten salt electrolyte in between, is described in the journal Nature, in a paper by MIT Professor Donald Sadoway, along with 15 others at MIT and in China, Canada, Kentucky, and Tennessee.

"I wanted to invent something that was better, much better, than lithium-ion batteries for small-scale stationary storage, and ultimately for automotive [uses]," explains Sadoway, who is the John F. Elliott Professor Emeritus of Materials Chemistry.

In addition to being expensive, lithium-ion batteries contain a flammable electrolyte, making them less than ideal for transportation. So, Sadoway started studying the periodic table, looking for cheap, Earth-abundant metals that might be able to substitute for lithium.

The commercially dominant metal, iron, doesn't have the right electrochemical properties for an efficient battery, he says. But the second-most-abundant metal in the marketplace - and actually the most abundant metal on Earth - is aluminum. "So, I said, well, let's just make that a bookend. It's gonna be aluminum," he says.

Then came deciding what to pair the aluminum with for the other electrode, and what kind of electrolyte to put in between to carry ions back and forth during charging and discharging. The cheapest of all the non-metals is sulfur, so that became the second electrode material.

As for the electrolyte, "we were not going to use the volatile, flammable organic liquids" that have sometimes led to dangerous fires in cars and other applications of lithium-ion batteries, Sadoway says. They tried some polymers but ended up looking at a variety of molten salts that have relatively low melting points - close to the boiling point of water, as opposed to nearly 1,000 degrees Fahrenheit for many salts.

"Once you get down to near body temperature, it becomes practical" to make batteries that don't require special insulation and anticorrosion measures, he says.

The three ingredients they ended up with are cheap and readily available - aluminum, no different from the foil at the supermarket; sulfur, which is often a waste product from processes such as petroleum refining; and widely available salts. "The ingredients are cheap, and the thing is safe - it cannot burn," Sadoway says.

In their experiments, the team showed that the battery cells could endure hundreds of cycles at exceptionally high charging rates, with a projected cost per cell of about one-sixth that of comparable lithium-ion cells. They showed that the charging rate was highly dependent on the working temperature, with 110 degrees Celsius (230 degrees Fahrenheit) showing 25 times faster rates than 25 C (77 F).

Surprisingly, the molten salt the team chose as an electrolyte simply because of its low melting point turned out to have a fortuitous advantage. One of the biggest problems in battery reliability is the formation of dendrites, which are narrow spikes of metal that build up on one electrode and eventually grow across to contact the other electrode, causing a short-circuit and hampering efficiency. But this particular salt, it happens, is very good at preventing that malfunction.

The chloro-aluminate salt they chose "essentially retired these runaway dendrites, while also allowing for very rapid charging," Sadoway says. "We did experiments at very high charging rates, charging in less than a minute, and we never lost cells due to dendrite shorting."

"It's funny," he says, because the whole focus was on finding a salt with the lowest melting point, but the catenated chloro-aluminates they ended up with turned out to be resistant to the shorting problem. "If we had started off with trying to prevent dendritic shorting, I'm not sure I would've known how to pursue that," Sadoway says. "I guess it was serendipity for us."

What's more, the battery requires no external heat source to maintain its operating temperature. The heat is naturally produced electrochemically by the charging and discharging of the battery. "As you charge, you generate heat, and that keeps the salt from freezing. And then, when you discharge, it also generates heat," Sadoway says. In a typical installation used for load-leveling at a solar generation facility, for example, "you'd store electricity when the sun is shining, and then you'd draw electricity after dark, and you'd do this every day. And that charge-idle-discharge-idle is enough to generate enough heat to keep the thing at temperature."

This new battery formulation, he says, would be ideal for installations of about the size needed to power a single home or small to medium business, producing on the order of a few tens of kilowatt-hours of storage capacity.

For larger installations, up to utility scale of tens to hundreds of megawatt hours, other technologies might be more effective, including the liquid metal batteries Sadoway and his students developed several years ago and which formed the basis for a spinoff company called Ambri, which hopes to deliver its first products within the next year. For that invention, Sadoway was recently awarded this year's European Inventor Award.

The smaller scale of the aluminum-sulfur batteries would also make them practical for uses such as electric vehicle charging stations, Sadoway says. He points out that when electric vehicles become common enough on the roads that several cars want to charge up at once, as happens today with gasoline fuel pumps, "if you try to do that with batteries and you want rapid charging, the amperages are just so high that we don't have that amount of amperage in the line that feeds the facility." So having a battery system such as this to store power and then release it quickly when needed could eliminate the need for installing expensive new power lines to serve these chargers.

The new technology is already the basis for a new spinoff company called Avanti, which has licensed the patents to the system, co-founded by Sadoway and Luis Ortiz '96 ScD '00, who was also a co-founder of Ambri.

"The first order of business for the company is to demonstrate that it works at scale," Sadoway says, and then subject it to a series of stress tests, including running through hundreds of charging cycles.

Would a battery based on sulfur run the risk of producing the foul odors associated with some forms of sulfur? Not a chance, Sadoway says. "The rotten-egg smell is in the gas, hydrogen sulfide.

This is elemental sulfur, and it's going to be enclosed inside the cells." If you were to try to open up a lithium-ion cell in your kitchen, he says (and please don't try this at home!), "the moisture in the air would react and you'd start generating all sorts of foul gases as well. These are legitimate questions, but the battery is sealed, it's not an open vessel. So I wouldn't be concerned about that."

The research team included members from Peking University, Yunnan University and the Wuhan University of Technology, in China; the University of Louisville, in Kentucky; the University of Waterloo, in Canada; Oak Ridge National Laboratory, in Tennessee; and MIT. The work was supported by the MIT Energy Initiative, the MIT Deshpande Center for Technological Innovation, and ENN Group.

Research Report:"Fast-charging aluminium-chalcogen batteries resistant to dendritic shorting"


Related Links
Department of Materials Science and Engineering
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Researchers develop new faster charging hydrogen fuel cell
Sydney, Australia (SPX) Aug 15, 2022
Researchers from the University of Technology Sydney (UTS) and Queensland University of Technology (QUT) have developed a new method to improve solid-state hydrogen fuel cell charging times. Hydrogen is gaining significant attention as an efficient way to store 'green energy' from renewables such as wind and solar. Compressed gas is the most common form of hydrogen storage, however it can also be stored in a liquid or solid state. Dr Saidul Islam, from the University of Technology Sydney, sa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
NASA, Axiom Space to launch second private astronaut mission to ISS in 2023

NASA repairs issue with Voyager 1 space probe

NASA awards contract to demonstrate trash compacting system for ISS

Boeing eyes February for space capsule's first crewed flight

ENERGY TECH
NASA Moon rocket ready for second attempt at liftoff

NASA says weather, SLS rocket look good for Artemis I launch on Saturday

NASA scrubs launch of giant Moon rocket, may try again Friday

New launch attempt Saturday for NASA's Moon rocket: official

ENERGY TECH
MIT's MOXIE experiment reliably produces oxygen on Mars

An Unexpected Stop during Sols 3580-3581

MAVEN and EMM make first observations of patchy proton aurora at Mars

A Whole New World - Sols 3578-3579

ENERGY TECH
Plant growth in China's space lab in good condition

Energy particle detector helps Shenzhou-14 crew conduct EVAs

China conducts spaceplane flight test

103rd successful rocket launch breaks record

ENERGY TECH
Space tech: In Jilin, they build satellites

SpaceX and T-Mobile unveil satellite plan to end cellphone 'dead zones'

Introducing Huginn

T-Mobile Takes Coverage Above and Beyond With SpaceX

ENERGY TECH
Game on at Gamescom

Steel sector cracks on Ukraine, energy price spikes

Selfridges targets 'circular' sales for almost half its goods

China's Tencent ups investment in France's Ubisoft

ENERGY TECH
JWST makes first unequivocal detection of carbon dioxide in an exoplanet atmosphere

An extrasolar world covered in water

Webb detects carbon dioxide in exoplanet atmosphere

Webb telescope finds CO2 for first time in exoplanet atmosphere

ENERGY TECH
NASA's Juno Mission Reveals Jupiter's Complex Colors

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Uranus to begin reversing path across the night sky on Wednesday

Underwater snow gives clues about Europa's icy shell









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.