. 24/7 Space News .
PHYSICS NEWS
A key piece to understanding how quantum gravity affects low-energy physics
by Staff Writers
Trieste, Italy (SPX) Aug 09, 2019

illustration only

Researchers have, for the first time, identified the sufficient and necessary conditions that the low-energy limit of quantum gravity theories must satisfy to preserve the main features of the Unruh effect.

In a new study, led by researchers from SISSA (Scuola Internazionale Superiore di Studi Avanzati, the Complutense University of Madrid and the University of Waterloo, a solid theoretical framework is provided to discuss modifications to the Unruh effect caused by the microstructure of space-time.

The Unruh effect, named after the Canadian physicist who theorized it in 1976, is the prediction that someone who has propulsion and hence accelerates would observe photons and other particles in a seemingly empty space while another person who is inertial would see a vacuum in that same area.

"Inertial and accelerated observers do not agree on the meaning of 'empty space," says Raul Carballo-Rubio, a postdoctoral researcher at SISSA, Italy. "What an inertial observer carrying a particle detector identifies as a vacuum is not experienced as such by an observer accelerating through that same vacuum. The accelerated detector will find particles in thermal equilibrium, like a hot gas."

"The prediction is that the temperature recorded must be proportional to the acceleration. On the other hand, it is reasonable to expect that the microstructure of space-time or, more generally, any new physics that modifies the structure of quantum field theory at short distances, would induce deviations from this law.

While probably anyone would agree that these deviations must be present, there is no consensus on whether these deviations would be large or small in a given theoretical framework. This is precisely the issue that we wanted to understand."

"What we've done is analyzed the conditions to have Unruh effect and found that contrary to an extended belief in a big part of the community thermal response for particle detectors can happen without a thermal state," said Eduardo Martin-Martinez, an assistant professor in Waterloo's Department of Applied Mathematics.

"Our findings are important because the Unruh effect is in the boundary between quantum field theory and general relativity, which is what we know, and quantum gravity, which we are yet to understand."

"So, if someone wants to develop a theory of what's going on beyond what we know of quantum field theory and relativity, they need to guarantee they satisfy the conditions we identify in their low energy limits."

The researchers analyzed the mathematical structure of the correlations of a quantum field in frameworks beyond standard quantum field theory. This analysis was then used to identify the three necessary conditions that are sufficient to preserve the Unruh effect. These conditions can be used to determine the low-energy predictions of quantum gravity theories and the findings of this research provides the tools necessary to make these predictions in a broad spectrum of situations.

Having been able to determine how the Unruh effect is modified by alterations of the structure of quantum field theory, as well as the relative importance of these modifications, the researchers believe the study provides a solid theoretical framework to discuss and perhaps test this particular aspect as one of the possible phenomenological manifestations of quantum gravity. This is particularly important and appropriates even if the effect has not yet been measured experimentally, as it is expected to be verified in the not so distant future.

Research Report: "Unruh Effect Without Thermality"


Related Links
Scuola Internazionale Superiore di Studi Avanzati
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
Fastest eclipsing binary, a valuable target for gravitational wave studies
Los Angeles CA (SPX) Jul 26, 2019
Observations made with a new instrument developed for use at the 2.1-meter (84-inch) telescope at the National Science Foundation's Kitt Peak National Observatory have led to the discovery of the fastest eclipsing white dwarf binary yet known. Clocking in with an orbital period of only 6.91 minutes, the rapidly orbiting stars are expected to be one of the strongest sources of gravitational waves detectable with LISA, the future space-based gravitational wave detector. The Dense "Afterlives" ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Orion Service Module completes critical propulsion test

Two weeks of science and beyond on ISS

Study identifies way to enhance the sustainability of manufactured soils

As iPhone sales sputter, Apple moves toward reinvention, again

PHYSICS NEWS
AFRL achieves record-setting hypersonic ground test milestone

Lockheed awarded $405.7M contract for Army's hypersonic missile

In-Space selects Orbex for Scottish launch in 2022

Pentagon working on 9 separate hypersonic missile projects to take on Russia, China

PHYSICS NEWS
Dark meets light on Mars

Optometrists verify Mars 2020 rover's perfect vision

New finds for Mars rover, seven years after landing

MEDLI2 installation on Mars 2020 aeroshell begins

PHYSICS NEWS
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

PHYSICS NEWS
Companies partner to offer a complete solution for space missions as a service

Space data relay system shows its speed

ATLAS Space Operations extends global reach with nine new ground stations

Arianespace launches INTELSAT 39 and EDRS-C

PHYSICS NEWS
Australia eyes rare earth deposits amid fears over China supplies

Revolutionary way to bend metals could lead to stronger military vehicles

How NASA will protect astronauts from space radiation at the Moon

Russia unveils ambitious project for laser recharging of satellites in orbit

PHYSICS NEWS
Dead planets can 'broadcast' for up to a billion years

Pre-life building blocks spontaneously align in evolutionary experiment

Hordes of Earth's toughest creatures may now be living on Moon

Shining starlight on the search for life

PHYSICS NEWS
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.