. 24/7 Space News .
TIME AND SPACE
A domestic electron ion collider would unlock scientific mysteries of atomic nuclei
by Staff Writers
Washington DC (SPX) Jul 30, 2018

.

The science questions that could be answered by an electron ion collider (EIC) - a very large-scale particle accelerator - are significant to advancing our understanding of the atomic nuclei that make up all visible matter in the universe, says a new report by the National Academies of Sciences, Engineering, and Medicine.

Beyond its impact on nuclear science, the advances made possible by an EIC could have far-reaching benefits to the nation's science- and technology-driven economy as well as to maintaining U.S. leadership in nuclear physics and in collider and accelerator technologies.

The National Academies were asked by the U.S. Department of Energy (DOE) to examine the scientific importance of an EIC, as well as the international implications of building domestic EIC facility. The committee that conducted the study and wrote the report concluded that the science that could be addressed by an EIC is compelling and would provide long-elusive answers on the nature of matter.

An EIC would allow scientists to investigate where quarks and gluons, the tiny particles that make up neutrons and protons, are located inside protons and neutrons, how they move, and how they interact together.

While the famous Higgs mechanism explains the masses of the quarks, the most significant portion of the mass of a proton or neutron comes from its gluons and their interactions. Crucial questions that an EIC would answer include the origin of the mass of atomic nuclei, the origin of spin of neutrons and protons - a fundamental property that makes magnetic resonance imaging (MRI) possible, how gluons hold nuclei together, and whether emergent forms of matter made of dense gluons exist.

The report says a new EIC accelerator facility would have capabilities beyond all previous electron scattering machines in the U.S., Europe, and Asia. High energies and luminosities - the measure of the rate at which particle collisions occur - are required to achieve the fine resolution needed, and to reach such intensities and energy levels requires a collider where beams of electrons smash into beams of protons or heavier ions.

Comparing all existing and proposed accelerator facilities around the world, the committee concluded that an EIC with high energy and luminosity, and highly polarized electron and ion beams, would be unique and in a position to greatly further our understanding of visible matter.

"An EIC would be the most sophisticated and challenging accelerator currently proposed for construction in the U.S. and would significantly advance accelerator science, and more specifically collider science and technologies, here and around the world," said committee co-chair Gordon Baym, Center for Advanced Study Professor Emeritus, George and Ann Fisher Distinguished Professor of Engineering Emeritus, and Research Professor at the University of Illinois at Urbana-Champaign.

"The realization of an EIC is absolutely crucial to maintaining the health of the field of nuclear physics in the U.S. and would open up new areas of scientific investigation."

Currently, the Brookhaven National Laboratory (BNL) in Long Island, New York, has a heavy ion collider, and the Thomas Jefferson National Accelerator Laboratory (JLab) in Newport News, Virginia, has very energetic electron beams. Both labs have proposed design concepts for an EIC that would use their already available infrastructure, expertise, and experience.

The report, without favoring one over the other, says that taking advantage of the existing facilities would make development of an EIC cost-effective and reduce associated risks that come with building a large accelerator facility.

While both labs have well-developed designs for an EIC, both would require considerable R and D to fully deliver on the compelling science questions. The report states DOE R and D investment has been and would continue to be crucial to minimizing design risks in a timely fashion and to addressing outstanding accelerator challenges.

The committee added that along with advancing nuclear science, an EIC would also benefit other areas such as astrophysics, particle physics, accelerator physics, and theoretical and computational modeling. It would also play a valuable role in sustaining the U.S. nuclear physics workforce in the coming decades.

Moreover, it would have a significant role in advancing more broadly the technologies that would result from the research and development undertaken in the implementation and construction of an EIC in the U.S. The report emphasizes that an EIC is the only high-energy collider being planned for construction in the U.S. currently, and building such a facility would maintain U.S. leadership in accelerator collider science while benefiting the physical sciences.

"The science that an EIC would achieve is simply unique and would ensure U.S. leadership in nuclear science as well as the accelerator science and technology of colliders around the world," said committee co-chair Ani Aprahamian, Freimann Professor of Experimental Nuclear Physics at the University of Notre Dame.


Related Links
National Academies of Sciences, Engineering, and Medicine
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Scientists discover heaviest known calcium atom, other rare isotopes
Washington (UPI) Jul 12, 2018
Scientists have discovered eight new isotopes - all of them the heaviest-known forms of their respective elements. Through experimentation at RIKEN's Radioactive Isotope Beam Factory in Japan, scientists synthesized new sulfur, chlorine, argon, potassium, scandium and calcium isotopes - each with record numbers of neutrons. All iterations of an atomic element feature the same amount of protons, but different isotopes feature different numbers of neutrons in the nucleus. The more neutro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Seeking 72-hour Space Environment Forecasts with Updates on the Hour

First space tourist flights could come in 2019

A Two-Dimensional Space Program

Scientists Can Now Recycle Water, Air, Fuel, Making Deep Space Travel Possible

TIME AND SPACE
Roscosmos' Research Center's Staff Suspected of Leaking Data Abroad

Sustained hypersonic flight-enabling technology patent granted to Advanced Rockets Corporation

Hot firing proves solid rocket motor for Ariane 6 and Vega-C

2018 end to be busy for ISRO with several rocket launches

TIME AND SPACE
'Storm Chasers' on Mars Searching for Dusty Secrets

Name Europe's robot to roam and search for life on Mars

NASA May Have Destroyed Evidence for Organics on Mars 40 Years Ago

Martian Atmosphere Behaves as One

TIME AND SPACE
PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

TIME AND SPACE
Space, not Brexit, is final frontier for Scottish outpost

Billion Pound export campaign to fuel UK space industry

mu Space confirms payload on Blue Origin's upcoming New Shepard flight

New satellite constellations will soon fill the sky

TIME AND SPACE
Material formed from crab shells and trees could replace flexible plastic packaging

Detecting damage in non-magnetic steel with the help of magnetism

Intense conditions turn nitrogen metallic

SLAC's ultra-high-speed 'electron camera' catches molecules at a crossroads

TIME AND SPACE
X-ray Data May Be First Evidence of a Star Devouring a Planet

Glowing bacteria on deep-sea fish shed light on evolution, 'third type' of symbiosis

Origami-inspired device helps marine biologists study aliens

Finding a Planet with a 10-Year Orbit in a Few Months

TIME AND SPACE
The True Colors of Pluto and Charon

Dozen new Jupiter moons declared

NASA Juno data indicate another possible volcano on Jupiter moon Io

First Global Maps of Pluto and Charon from New Horizons Published









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.