![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Moscow, Russia (SPX) Nov 11, 2020
Scientists had long tried to come up with a system for predicting the properties of materials based on their chemical composition until they set sights on the concept of a chemical space that places materials in a reference frame such that neighboring chemical elements and compounds plotted along its axes have similar properties. This idea was first proposed in 1984 by the British physicist, David G. Pettifor, who assigned a Mendeleev number (MN) to each element. Yet the meaning and origin of MNs were unclear. Scientists from the Skolkovo Institute of Science and Technology (Skoltech) puzzled out the physical meaning of the mysterious MNs and suggested calculating them based on the fundamental properties of atoms. They showed that both MNs and the chemical space built around them were more effective than empirical solutions proposed until then. Their research supported by a grant from the Russian Science Foundation's (RSF) World-class Lab Research Presidential Program was presented in The Journal of Physical Chemistry C. Systematizing the enormous variety of chemical compounds, both known and hypothetical, and pinpointing those with a particularly interesting property is a tall order. Measuring the properties of all imaginable compounds in experiments or calculating them theoretically is downright impossible, which suggests that the search should be narrowed down to a smaller space. David G. Pettifor put forward the idea of chemical space in the attempt to somehow organize the knowledge about material properties. The chemical space is basically a reference frame where elements are plotted along the axes in a certain sequence such that the neighboring elements, for instance, Na and K, have similar properties. The points within the space represent compounds, so that the neighbors, for example, NaCl and KCl, have similar properties, too. In this setting, one area is occupied by superhard materials and another by ultrasoft ones. Having the chemical space at hand, one could create an algorithm for finding the best material among all possible compounds of all elements. To build their "smart" map, Skoltech scientists, Artem R. Oganov and Zahed Allahyari, came up with their own universal approach that boasts the highest predictive power as compared to the best-known methods. For many years scientists were clueless as to how Pettifor derived his MNs (if not empirically), while their physical meaning remained a nearly "esoteric" mystery for years. "I had been wondering about what these MNs are for 15 years until I realized that they are most likely rooted in the atom's fundamental properties, such as radius, electronegativity, polarizability, and valence. "While valence is variable for many elements, polarizability is strongly correlated with electronegativity. This leaves us with radius and electronegativity which can be reduced to one property through a simple mathematical transformation. And here we go: we obtain an MN that turns out to be the best way to describe all the properties of an atom, and by a single number at that," explains Artem R. Oganov, RSF grant project lead, a professor at Skoltech and MISiS, a Member of the Academia Europaea, a Fellow of the Royal Society of Chemistry (FRSC) and a Fellow of the American Physical Society (APS). The scientists used the calculated MNs to arrange all the elements in a sequence that posed as the abscissa and ordinate axes at the same time. Each point in space In corresponds to all compounds of the corresponding elements. In this space, using measured or predicted properties of compounds, one can map any specific characteristic, for example, hardness, magnetization, enthalpy of formation, etc. A property map thus produced clearly showed the areas containing the most promising compounds, such as superhard or magnetic materials.
![]() ![]() Chain reaction: virus darkens future of Albania's chromium miners Bulqiz�, Albania (AFP) Nov 11, 2020 With mountains of chromite piling sky high on the docks of the port behind him in the Albanian city of Durres, logistics manager Henri Kurti explains the hold up. "When China and America have problems, we have even bigger problems in Bulqize," he says, referring to the region to the east where the blue-grey metal is mined before being shipped around the world. As the coronavirus pandemic rocks international commerce, knock-on effects are being felt in poor corners of the world like Albania, wher ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |