. 24/7 Space News .
A catalyst alloying platinum with a rare earth element could slash fuel cell costs
by Staff Writers
Beijing, China (SPX) Oct 13, 2022

Platinum-lanthanum nanoparticles acting as electrocatalysts to speed up the chemical reaction in a hydrogen fuel cell to produce electricity and water

Researchers have devised a method for combining high-cost platinum and a low-cost rare earth element, lanthanum, as an alloy to serve as a catalyst in the next generation of fuel cells that will improve their performance and slash their cost. The development should make it easier to decarbonize those heavy transport vehicles that are less amenable to the use of batteries to power them.

Batteries may have won the battle against hydrogen fuel cells for cleanly powering cars, but a number of other forms of transportation find it difficult to swap out internal combustion engines for batteries due to a range of obstacles such as the weight and volume of batteries that would be required for the sort of services they deliver. This is particularly true for heavy transport such as shipping, aviation and long-haul trucking. In these cases, most transport analysts suggest that they are likely to depend on some sort of clean fuel instead.

A fuel cell is able to power vehicles and other machines by turning the chemical energy of hydrogen into electricity, with the only other outputs being water and heat. Up until now, the type of fuel cell most commonly used in a number of devices, from satellites to the Space Shuttle, has been the alkaline fuel cell, whose invention dates back almost a century. The next generation is more likely to look something like Polymer Electrolyte Membrane Fuel Cell, which also uses hydrogen to produce electricity, but it is much more compact, making it especially attractive for heavy transport vehicles.

Key to making such electrochemical reactions more efficient-and thus reduce the cost of fuel cells to make them more competitive with using fossil fuels-is finding better catalysts, materials that speed up those reactions.

Unfortunately, of all these 'electrocatalysts' that make the key chemical reaction involved (the oxygen reduction reaction, or ORR) possible, platinum is by far the best. And platinum, a rare metal, is not cheap. For PEMFCs in particular, the incredibly high cost of platinum has been a major barrier to their adoption. Rapid degradation after a relatively small number of cycles of use of this already expensive electrocatalyst in the highly corrosive PEMFC environment has only made the situation worse.

"So the hunt is on for an electrocatalyst that is low-cost, more resistant to degradation and thus stable over longer periods of time, while also delivering impressive current density-in other words the amount of electrical current per unit of volume," said Siyuan Zhu, one of the authors of the paper and an electrochemist with the Changchun Institute of Applied Chemistry at the Chinese Academy of Sciences, "and so enabling us to keep the promise of the compactness of PEMFCs."

The main option that has been under consideration for cost reduction is by 'diluting' the amount of platinum needed as an electrocatalyst by alloying it with other, cheaper metals that can assist or even enhance platinum's catalytic properties.

And the main candidates for alloying with platinum have so far been the so-called late transition metals. Transition metals are those elements you find in the middle, or d-block, of the Periodic Table. Iron, manganese and chromium are transition metals in the middle of that middle block, and the 'late' transition metals, such as cadmium and zinc, can be found on the right-hand side of it.

Late transition metals have however proven not to be immune to dissolution in the harsh, corrosive PEMFC environment. This not only results in steady declines in performance, but the dissolved metal further reacts with byproducts of the oxygen reduction reaction, causing uncontrollable damage to the entire system.

However, the early transition metals, those on the left-hand side of the middle block in the Periodic Table such as yttrium and scandium, are much more stable. Theoretical calculations have shown alloys of platinum and these two early transition metals to be the most stable so far.

Amongst the early transition metals, one group has so far been overlooked: the rare earth elements (REEs). Despite the name, REEs are actually quite common in the Earth's crust, and they can contribute substantially to the electrochemical activity of catalysts. So the problem so far in exploring REEs as possible alloy partners for platinum has not come from cost, but instead their poor conductivity and solubility in acidic media. In principle, both of these problems can be overcome by using synthetic methods for production of a platinum-REE alloy, but up to now, there have few reports of any feasible synthetic methods.

So the researchers devised one for the preparation of an alloy between platinum and the REE lanthanum.

The technique involves only two simple steps. First, the researchers obtained readily available lanthanum salts and trimesic acid, and these two precursor materials then self-assembled themselves into nano-scale 'rods'. These nanorods were then impregnated with platinum at 900 C. This very high temperature is necessary to ensure a smooth process of alloying the two metals.

The resultant platinum-lanthanum nanoparticles were then stress-tested for their performance in a fuel cell. The alloy electrocatalyst surpassed the researchers' expectations, delivering superior stability and activity even after 30,000 fuel-cell cycles.

With the success of lanthanum as an alloy partner for platinum having been demonstrated, the researchers now want to try other rare earth elements to alloy with platinum to see if they can beat lanthanum's electrocatalytic performance.

Research Report:Ultra-Stable Pt5La Intermetallic Compound towards Highly Efficient Oxygen Reduction Reaction

Related Links
Tsinghua University
Powering The World in the 21st Century at Energy-Daily.com

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

The battery that runs 630 km on a single charge
Pohang, South Korea (SPX) Oct 07, 2022
The number of newly registered electric vehicles (EVs) in Korea surpassed 100,000 units last year alone. Norway is the only other country to match such numbers. The core materials that determine the battery life and charging speed of now commonly seen EVs are anode materials. Korea's domestic battery industry has been committed to finding revolutionary ways to increase the battery capacity by introducing new technologies or other anode materials. But what if we get rid of anode materials altogether? ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Micro Meat and Orbital Assembly team up on space-based food production venture

US flies Russian cosmonaut to ISS as Ukraine conflict rages

Australia seeks to grow plants on Moon by 2025

Amid Ukraine war, US flies Russian cosmonaut to ISS

NASA's Mars mission shields up for tests

China sends two satellites into space via offshore rocket launch

NASA sets new Artemis I launch window for Nov. 14

Japan orders satellite-carrying rocket to self-destruct after failed launch

Sols 3621-3622: Planetary Power Puzzle

NASA's InSight waits out dust storm

Sols 3614-3615: Chemin's Moment To Shine

Rover findings offer glimpse of Red Planet's ancient landscape

Mengtian space lab fueled ahead of upcoming launch

Tiangong space station marks key step in assembly

China begins search for fourth astronaut generation

China launches multiple satellites in back to back launches

ViaSat-3 satellite completes mechanical environmental testing

Northrop Grumman-built commercial telecommunications satellites launched successfully

Japan becomes first in Asia to get Starlink connection

Viasat and Inmarsat confident their combination benefits consumers

Hounded at home, China's video game firms welcomed in Europe

Record quarterly profit for Indian software giant TCS

Engineers develop a new kind of shape-memory material

Facebook parent Meta unveils AI video generator Make-a-Video

JPL developing more tools to help search for life in deep space

The fountain of life: Water droplets hold the secret ingredient for building life

A day at the beach for life on other worlds

Laughing gas in space could mean life

NASA's Juno gets highest-resolution close-up of Jupiter's moon Europa

Juno probe takes detailed photo of Jupiter's moon, Europa

Juno will perform close flyby of Jupiter's icy moon Europa

Planetary-scale 'heat wave' discovered in Jupiter's atmosphere

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.