Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Electron microscopy enables imaging of gold nanoparticles
by Staff Writers
Helsinki, Finland (SPX) Aug 25, 2014


This is a visualization of the atomic structure of the Au68 gold nanoparticle determined by electron microscopy. The colored spheres denote gold atoms in different crystal shells around the central axis (red). The background shows a collection of real-life electron microscopy data from which the single structure shown was reconstructed. Image courtesy Maia Azubel, Stanford University.

Nanometre-scale gold particles are intensively investigated for application as catalysts, sensors, drug delivery devices, biological contrast agents and components in photonics and molecular electronics. Gaining knowledge of their atomic-scale structures, fundamental for understanding physical and chemical properties, has been challenging.

Now, researchers at Stanford University, USA, have demonstrated that high-resolution electron microscopy can be used to reveal a three-dimensional structure in which all gold atoms are observed.

The results are in close agreement with a structure predicted at the University of Jyvaskyla, Finland, on the basis of theoretical modelling and infrared spectroscopy (see Figure). The research was published in Science.

The revealed gold nanoparticle is 1.1 nm in diameter and contains 68 gold atoms organised in a crystalline fashion at the centre of the particle. The result was supported by small-angle X-ray scattering done in Lawrence Berkeley National Laboratory, USA, and by mass spectrometry done at Hokkaido University, Japan.

Electron microscopy is similar in principle to conventional light microscopy, with the exception that the wavelength of the electron beam used for imaging is close to the spacing of atoms in solid matter, about a tenth of a nanometre, in contrast with the wavelength of visible light, which is hundreds of nanometres.

A crucial aspect of the new work is the irradiation of the nanoparticle with very few electrons to avoid perturbing the structure of the nanoparticle. The success of this approach opens the way to the determination of many more nanoparticle structures and to both fundamental understanding and practical applications.

The researchers involved in the work are Maia Azubel, Ai Leen Koh, David Bushnell and Roger D. Kornberg from Stanford University, Sami Malola, Jaakko Koivisto, Mika Pettersson and Hannu Hakkinen from the University of Jyvaskyla, Greg L. Hura from Lawrence Berkeley National Laboratory, and Tatsuya Tsukuda and Hironori Tsunoyama from Hokkaido University.

The work at the University of Jyvaskyla was supported by the Academy of Finland. The computational work in Hannu Hakkinen's group was done at the HLRS-GAUSS centre in Stuttgart as part of the PRACE project "Nano-gold at the bio-interface".

M. Azubel, J. Koivisto, S. Malola, D. Bushnell, G.L. Hura, A.L. Koh, H. Tsunoyama, T. Tsukuda, M. Pettersson, H. Hakkinen and R.D. Kornberg, "Electron microscopy of gold nanoparticles at atomic resolution", Science 345, 909 (2014)

.


Related Links
Academy of Finland
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Shaping the Future of Nanocrystals
Berkeley CA (SPX) Aug 22, 2014
The first direct observations of how facets form and develop on platinum nanocubes point the way towards more sophisticated and effective nanocrystal design and reveal that a nearly 150 year-old scientific law describing crystal growth breaks down at the nanoscale. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) used highly sophis ... read more


NANO TECH
China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

China to send orbiter to moon and back

NANO TECH
Scientist uncovers red planet's climate history in unique meteorite

Opportunity Mars Rover Suffers a Series of Resets

A Salty, Martian Meteorite Offers Clues to Habitability

Mars Rover Team Chooses Not to Drill 'Bonanza King'

NANO TECH
US to Stop Using Soyuz Spacecraft, Invest in Domestic Private Space Industry

25 Years After Neptune: Reflections on Voyager

Long-term spaceflights challenged as harm to astronauts' health revealed

Voyager Map Details Neptune's Strange Moon Triton

NANO TECH
Same-beam VLBI Tech monitors Chang'E-3 movement on moon

China Sends Remote-Sensing Satellite into Orbit

More Tasks for China's Moon Mission

China's Circumlunar Spacecraft Unmasked

NANO TECH
NASA Awaits Boeing's Completion of Soyuz Replacement

Belka and Strelka, the canine cosmonauts

Russian Cosmonauts Conclude EVA Ahead of Schedule

Orbital cargo ship makes planned re-entry to Earth

NANO TECH
Sea Launch Takes Proactive Steps to Address Manifest Gap

SpaceX rocket explodes during test flight

Russian Cosmonauts Carry Out Science-Oriented Spacewalk Outside ISS

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

NANO TECH
Orion Rocks! Pebble-Size Particles May Jump-Start Planet Formation

Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

NANO TECH
New EIAST Primary Sat Fab Facilities Ready Soon

Photon speedway puts big data in the fast lane

The fluorescent fingerprint of plastics

Atoms to Product: Aiming to Make Nanoscale Benefits Life-sized




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.