. 24/7 Space News .
BIO FUEL
A biofuel for automated heat generation
by Staff Writers
Tomsk, Russia (SPX) Oct 04, 2018

This is Arkadievsky peat at the Tomsk Oblast in Siberia Russia.

Pyrolysis - a process of biomass decomposition - can be organized automatically for heat generation out of the most common type of biomass such as peat and straw. That is, it is sufficient to heat biomass to a certain temperature and then the process proceeds in the autothermal mode due to its own heat release. This technology was studied by scientists from Tomsk Polytechnic University in the article published in the Journal of Thermal Analysis and Calorimetry.

The development of research in this domain will make energy generation out of biofuel more resource efficient and feasible.

The scientists presented the study results for such types of biomass as pine sawdust, chips from various types of wood, straw, two types of peat - from the Arkadievsky and Sukhovskoye deposits from the Tomsk Oblast.

They are the most common types of biomass in the region and typical for Russia as a whole. In order to generate heat and energy valuable products - tar, solid carbonaceous residue and combustible gas - TPU scientists subjected it to pyrolysis, the process of thermal decomposition of organic matter in an oxygen-free environment.

On the planet, there is a huge amount of organic matter which can be used as biofuel, i.e. products of the plant of animal worlds as well as the vital activity of human society. Such fuel is certainly much more environmental friendly compared to traditional fuels.

A co-author of the study, a research fellow at the Butakov Research Center Roman Tabakaev says: 'However, to replace or just compete with fossil organic raw materials, fuel production out of biomass should become more feasible.'

One of the ways to produce heat from biomass is pyrolytic processing. Pyrolysis is the basis for many modern technologies - the production of biofuels out of biomass, conversion of biofuels etc.

Despite the fact that pyrolysis is known for a long time scientists have not come to a common opinion as far as this energy-consuming technology. Some believe this is an unprofitable wasteful technology as it requires energy expenses to decompose organic matter.

The other prove, and the study authors refer themselves to them, that pyrolysis can undergo with heat release that can be used to maintain the process itself. The study carried out by TPU researchers vividly prove this assumption.

In autothermal processes, reaction temperature is maintained due to own thermal release. Practically, it allows the reduction of the cost of the technological process, increasing the efficiency of processing and the reduction of the number of auxiliary equipment.

In the respect of pyrolysis, an autothermal regime is a process in which the magnitude of the thermal effect exceeds thermal costs. That is, at the decomposition of biomass much heat should be released than it takes to heat it.

To identify the values of these indicators - the heat effect and heat costs - for specific biomass types, the authors of the article conducted thermogravimetric (TGA) and differential thermal analyzes, and also experimentally processed the above mentioned biomass samples.

'The experimental and analytical data obtained indicate that during the pyrolysis of straw, chips, sawdust and peat from the Sukhovskoy deposit much heat is released than it is required for their heating. In the case of peat from the Arkadievsky deposit, the thermal effect was less than the cost of heating,' - notes Roman Tabakaev.

This effect for straw and wood is associated with the processes of decomposition of cellulose, lignin and hemicellulose during pyrolysis. These processes generate additional heat. In the case of Sukhovskoy peat, this effect is due to the decomposition of cellulose, humic and fulvic acids.

Thus, the difference between the received and spent heat for dried straw samples was +654.5 kilojoules per kilogram (kJ / kg), for chips - +282.0 kJ / kg, for sawdust - +303.6 kJ / kg, for Sukhovskoy peat - +275.3 kJ / kg.

'In the article, we have shown by calculation the possibility of organizing such an autothermal pyrolysis. This data is confirmed by the results of recent physical experiments with straw, which showed: when the temperature of the straw reaches 365 C, it continues to rise without additional heating, 'independently', to 430 C.

Now our task is to physically realize pyrolysis in an autothermal regime with continuous supply of raw materials to the reactor, for which currently we are creating an experimental installation,' =says the scientist.

Research paper


Related Links
Tomsk Polytechnic University
Bio Fuel Technology and Application News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


BIO FUEL
Ready-to-use recipe for turning plant waste into gasoline
Leuven, Belgium (SPX) Sep 27, 2018
Bioscience engineers at KU Leuven, Belgium, already knew how to make gasoline in the laboratory from plant waste such as sawdust. Now the researchers have developed a roadmap, as it were, for industrial cellulose gasoline. In 2014, at KU Leuven's Centre for Surface Chemistry and Catalysis, researchers succeeded in converting sawdust into building blocks for gasoline. A chemical process made it possible to convert the cellulose - the main component of plant fibres - in the sawdust into hydrocarbon ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
NASA Unveils Sustainable Campaign to Return to Moon, on to Mars

Partnership, Teamwork Enable Landmark Science Glovebox Launch to Space Station

US-Russia space cooperation needs continued insulation from politics

Russia May Help India to Launch Country's First Manned Space Mission

BIO FUEL
China to launch Long March-9 rocket in 2028

Arianespace to launch KOMPSAT-7 for the Korea Aerospace Research Institute (KARI) using a Vega C launch vehicle

Russia plans to develop reusable stage for carrier rocket by 2023, FPI Says

Roscosmos Finds No Flaw in Fabric of Soyuz Vehicle at Assembly Stage - Source

BIO FUEL
Martian moon likely forged by ancient impact, study finds

How a tiny Curiosity motor identified a massive Martian dust storm

Martian moon may have come from impact on home planet

NASA sees its stalled Martian robot, but still no signals

BIO FUEL
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

BIO FUEL
Thinkom develops enterprise user terminal for Telesat's LEO constellation

SiriusXM buys Pandora to step up streaming music wars

Matthias Maurer graduates as ESA astronaut

Space-related start-up technology companies create synergistic innovation

BIO FUEL
Commercially relevant bismuth-based thin film processing

Facebook unveils upgraded wireless Oculus headset in VR push

Scientists solve the golden puzzle of calaverite

Magnetic field milestone

BIO FUEL
Plans for European Astrobiology Institute Announced

Gaia finds candidates for interstellar 'Oumuamua's home

Bacteria's password for sporulation hasn't changed in over 2 billion years

NASA is taking a new look at searching for life beyond Earth

BIO FUEL
Juno image showcases Jupiter's brown barge

New research suggest Pluto should be reclassified as a planet

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.