. | . |
ANU research set to shake up space missions by Staff Writers Canberra, Australia (SPX) Mar 15, 2019
A new study from The Australian National University (ANU) has found a number of 2D materials can not only withstand being sent into space, but potentially thrive in the harsh conditions. It could influence the type of materials used to build everything from satellite electronics to solar cells and batteries - making future space missions more accessible, and cheaper to launch. PhD candidate and lead author Tobias Vogl was particularly interested in whether the 2D materials could withstand intense radiation. "The space environment is obviously very different to what we have here on Earth. So we exposed a variety of 2D materials to radiation levels comparable to what we expect in space," Mr Vogl said. "We found most of these devices coped really well. We were looking at electrical and optical properties and basically didn't see much difference at all." During a satellite's orbit around the earth, it is subject to heating, cooling, and radiation. While there's been plenty of work done demonstrating the robustness of 2D materials when it comes to temperature fluctuations, the impact of radiation has largely been unknown - until now. The ANU team carried out a number of simulations to model space environments for potential orbits. This was used to expose 2D materials to the expected radiation levels. They found one material actually improved when subjected to intense gamma radiation. "A material getting stronger after irradiation with gamma rays - it reminds me of the hulk," Mr Vogl said. "We're talking about radiation levels above what we would see in space - but we actually saw the material become better, or brighter." Mr Vogl says this specific material could potentially be used to detect radiation levels in other harsh environments, like near nuclear reactor sites. "The applications of these 2D materials will be quite versatile, from satellite structures reinforced with graphene - which is five-times stiffer than steel - to lighter and more efficient solar cells, which will help when it comes to actually getting the experiment into space." Among the tested devices were atomically thin transistors. Transistors are a crucial component for every electronic circuit. The study also tested quantum light sources, which could be used to form what Mr Vogl describes as the "backbone" of the future quantum internet. "They could be used for satellite-based long-distance quantum cryptography networks. This quantum internet would be hacking proof, which is more important than ever in this age of rising cyberattacks and data breaches." "Australia is already a world leader in the field of quantum technology," senior author Professor Ping Koy Lam said. "In light of the recent establishment of the Australian Space Agency, and ANU's own Institute for Space, this work shows that we can also compete internationally in using quantum technology to enhance space instrumentations." The research has been published in the journal Nature Communications.
It's all in the twist: Physicists stack 2D materials at angles to trap particles Seattle WA (SPX) Mar 08, 2019 Future technologies based on the principles of quantum mechanics could revolutionize information technology. But to realize the devices of tomorrow, today's physicists must develop precise and reliable platforms to trap and manipulate quantum-mechanical particles. In a paper published Feb. 25 in the journal Nature, a team of physicists from the University of Washington, the University of Hong Kong, the Oak Ridge National Laboratory and the University of Tennessee, report that they have developed a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |