. 24/7 Space News .
EARLY EARTH
541-million-year-old 3D fossil algae reveal modern-looking ancestry of the plant kingdom
by Staff Writers
Toronto, Canada (SPX) Sep 22, 2022

Reconstruction of a cross-section through Protocodium sinense, showing likeness to modern Codium.

Paleontologists have identified a new genus and species of algae called Protocodium sinense which predates the origin of land plants and modern animals and provides new insight into the early diversification of the plant kingdom.

Discovered at a site in China, this 541-million-year-old fossil is the first and oldest green alga from this era to be preserved in three dimensions, enabling the researchers to investigate its internal structure and identify the new specimen with unprecedented accuracy. The study is published in BMC Biology, opening a window into a world of evolutionary puzzles that scientists are just beginning to unravel.

"Protocodium belongs to a known lineage of green algae and has a surprisingly modern architecture, showing that these algae were already well diversified before the end of the Ediacaran period," says co-author Cedric Aria, postdoctoral fellow in the Department of Ecology and Evolutionary Biology in the Faculty of Arts and Science at the University of Toronto and based at the Royal Ontario Museum (ROM). "Its discovery touches the origin of the entire plant kingdom and puts a familiar name on the organisms that preceded the Cambrian explosion over half a billion years ago, when the world's first modern ecosystems emerged."

The newly discovered Protocodium fossils were found by a team led by Hong Hua, professor of geology, and including Shu Chai, postdoctoral researcher, both of Northwest University, Xi'an, China. It is part of the Gaojiashan biota, the name given to a significant group of exceptionally well-preserved fossils, at the Dengying Formation in the southern Shaanxi Province. In the past 20 years, this geological formation has yielded important fossil species documenting the end of the Ediacaran Period 541-million-years ago.

Organisms and their parts that do not originally absorb minerals - unlike shells or bones - require exceptional conditions to be preserved. In this case, the whole fossils and their fine cellular details were preserved in three dimensions due to the replacement of the original organic material by phosphate. This mode of preservation allowed the researchers to use various electron and X-ray microscopy techniques to virtually slice the fossil, unveil its internal structure with precision and ultimately identify it as a close relative of the modern Codium alga, a type of seaweed.

Protocodium fossils are small spheres half a millimetre wide, like large grains of pollen, covered by a multitude of smaller domes. Thanks to the 3D examination, the researchers determined the domed surface to be part of a complex, single cell that contains thin strands called siphons. This morphology is typical of certain modern single-celled seaweeds that contain many nuclei.

The discovery of Protocodium would call for caution when identifying generic spherical Ediacaran fossils and may imply that organisms like Codium are in fact much older and widespread. The famous Doushantuo fossil embryos, also from China and preserved in 3D, have

been at the heart of debates about the deep origin of certain animal groups. Specific stages of some of these animal-like embryos resemble the unicellular Protocodium on the outside, but 3D slicing reveals how they are comprised of many cells. On the other hand, numerous 2D, round fossils of uncertain algal or other affinity are also known from the Ediacaran and older periods, but in less detail.

"We know that seaweed-like fossils are at least one billion-years-old," says Chai, the study's first author. "But until now, flat, grainy two-dimensional preservation has made it challenging to recognize more than general morphological structures."

Green algae are photosynthetic organisms, which means they convert light and carbon dioxide into sugars and oxygen. They were therefore likely important foundations of Earth's early ecosystems, and the study suggests green algae were already established in the world's shallow waters as carbon dioxide recyclers and oxygen producers before the Cambrian explosion.

Apart from its smaller size, Protocodium appears surprisingly identical to the modern Codium, a type of green algae found in many seas worldwide. Certain types of this seaweed are notoriously invasive - such as Codium fragile subspecies tomentosoides, dubbed "dead man's fingers" for its appearance, and spread along with commercially farmed shellfish. From an evolutionary perspective, green algae like the ancient Protocodium and land plants share a common ancestor that was thought to be about one billion to one billion and a half years old, but now likely older - the assignment of Protocodium so close to a modern group pushes back in time the history of the entire plant kingdom.

"It's very telling that such an organism has remained practically unchanged over at least 540 million years," says Aria. "By the Ediacaran, evolution had driven it towards a stable adaptive zone - it's been comfortable there since, and more than that, quite successful. So much so, in fact, that nowadays Codium takes advantage of global trade to easily outcompete other algal species."

Funding support for the research and field work came from the National Natural Science Foundation of China and the National Key Research and Development Program. Aria's post-doctoral fellow is funded via the Albert and Barbara Milstein and The Polk Family Foundations (ROM) and NSERC Discovery Grant awarded to Dr. Jean-Bernard Caron, Richard M. Ivey Curator of Invertebrate Palaeontology at the ROM.

Research Report:A stem-group Codium alga from the latest Ediacaran of South China provides taxonomic insight into the early diversification of the plant kingdom


Related Links
University of Toronto
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
What killed dinosaurs and other life on earth?
Hanover NH (SPX) Sep 13, 2022
Determining what killed the dinosaurs 66 million years ago at the end of the Cretaceous Period has long been the topic of debate, as scientists set out to determine what caused the five mass extinction events that reshaped life on planet Earth in a geological instant. Some scientists argue that comets or asteroids that crashed into Earth were the most likely agents of mass destruction, while others argue that large volcanic eruptions were the cause. A new Dartmouth-led study published in the Proceedings ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
American, Russians reach space station as war rages in Ukraine

Kayhan Space and Precious Payload team to boost access to space traffic management

American, Russians to blast off for ISS as war rages in Ukraine

Axiom Space and Turkey sign agreement to send first Turkish astronaut to space

EARLY EARTH
NASA scraps Tuesday Moon launch due to storm

SpaceX's Florida launch seen as far as New York, Massachusetts

Maritime Launch and Skyrora partner to launch Skyrora XL from Spaceport Nova Scotia

Rocket Lab selects NASA Stennis Space Center for Neutron Engine Test Facility

EARLY EARTH
InSight hears its first meteoroid impacts on Mars

Number of ancient Martian lakes might be dramatically underestimated

Sols 3599-3600: A Stay and Play Kind of Day

China's Mars rover expected to resume work in December

EARLY EARTH
China's manned space program attracts more public attention

Taikonauts in orbit salute China's manned space program on 30th anniversary

Space missions bring Down-to-Earth benefits

Shenzhou XIV astronauts in 4-hour spacewalk

EARLY EARTH
Regions keep dark skies alight with constellations

Who wants to go to the moon? Europe names astronaut candidates

Rocket Lab hosts Investor Day in New York

Viasat and Inmarsat receive UK Govt approval for proposed merger

EARLY EARTH
3D printing drones work like bees to build and repair structures while flying

ATLAS awarded SBIR contract for space domain awareness

Harnessing new propulsion technology for Earth monitoring

SAIC and Rogue Space Systems partner to deliver services for objects orbiting Earth

EARLY EARTH
Big planets get a head start in pancake-thin nurseries

SwRI scientist helps identify new evidence for habitability in Enceladus's ocean

"Blanket-covered" single-molecules: a breakthrough in revealing the origin of life

New exoplanet detection program for citizen scientists

EARLY EARTH
Juno will perform close flyby of Jupiter's icy moon Europa

Planetary-scale 'heat wave' discovered in Jupiter's atmosphere

First 3D renders from JunoCam data reveal "frosted cupcake" clouds on Jupiter

Jupiter to reach opposition, closest approach to Earth in 70 years









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.