. 24/7 Space News .
Asteroid Danger Scale Developed
wham, splat, game over Cambridge - July 22, 1999 - A Massachusetts Institute of Technology professor has come up with a scale that assigns a number to the likelihood that an asteroid will collide with the Earth. Zero or one means virtually no chance of impact or damage; 10 means certain catastrophe.

Richard P. Binzel, professor of Earth, Atmospheric and Planetary Sciences at MIT, created the scale to help scientists, the media and the public assess the potential danger of asteroids. He hopes that it will assuage concerns about a potential doomsday collision with the Earth.

The Torino Scale
Asteroid and Comet Impact Hazard Predictions in the 21st Century
Events Having
No Likely Consequences
0 The likelihood of a collision is zero or well below the chance that a random object of the sale size will strike the Earth within the few decades. This designation also applies to any small object that, in the event of a collision, is unlikely to reach the Earth surface intact.
Events Meriting Careful Monitoring 1 The chance of collision is extremely unlikely, about the same as a random object of the same size striking the Earth within the next few decades.
2 A somewhat close, but not unusual encounter. Collision is very unlikely.
Events Meriting Concern 3 A close encounter, 1% or greater chance of a collision capable of causing localized destruction.
4 A close encounter, 1% or greater chance of a collision capable of causing regional destruction.
5 A close encounter, with a significant threat of a collision capable of causing regional devastation.
Threatening Events 6 A close encounter, with a significant threat of a collision capable of causing global catastrophe.
7 A close encounter, with a extremely significant threat of a collision capable of causing global catastrophe.
8 A collision capable of causing localized destruction. Such events occur somewhere on Earth between once per 50 years and once per 1000 years.
Certain Collisions 9 A collision capable of causing regional devastation. Such events occur somewhere between once per 1000 years and once per 100,000 years.
10 A collision capable of causing a global climatic catastrophe. Such events occur somewhere once per 100,000 years or less often.
HTML Chart Copyright SpaceDaily.com

Binzel's risk-assessment system is similar to the Richter scale used for earthquakes. It is named the Torino Impact Hazard Scale for the Italian city in which it was adopted at a workshop of the International Astronomical Union (IAU) in June.

The IAU will announce today (July 22) at the third United Nations conference on the exploration and peaceful uses of outer space (UNISPACE III in Vienna, Austria) that it has officially endorsed the Torino scale to gauge potential impacts with asteroids and comets, collectively referred to as near-Earth objects (NEOs).

"What I find especially important about the Torino impact scale is that it comes in time to meet future needs as the rate of discoveries of near-Earth objects continues to increase," said Hans Rickman, IAU assistant general secretary.

"The Torino scale is a major advance in our ability to explain the hazard posed by a particular NEO," said Carl Pilcher, science director for solar system exploration in the NASA Office of Space Science in Washington, D.C. "If we ever find an object with a greater value than one, the scale will be an effective way to communicate the resulting risk."

"Naming the newly proposed hazard scale after Torino is a highly appreciated recognition of the Torino Astronomical Observatory's great deal of work over the past two decades," said Alberto Cellino, astronomer at the Torino Astronomical Observatory.

Deep Impact
Based on the orbit trajectory for a given NEO, the scale takes into account the object's size and speed as well as the probability that it will come into contact with the Earth. The scale can be used at different levels of complexity by scientists, science journalists and the general public.

The scale assigns a number from zero through 10 to a predicted close encounter by an NEO. A zero, in the white zone, means that the object has virtually no chance of colliding with the Earth or that the object is so small it would disintegrate into harmless bits if it passed through the Earth's atmosphere. A red 10 means that the object will definitely hit the Earth and have the capability to cause a "global climatic catastrophe."

Close encounters in the green, yellow and orange zones with "scores" from one to seven are categorized as "events meriting careful monitoring" to "threatening events." Certain collisions fall in the red zone, with values of eight, nine or 10, depending on whether the impact energy is large enough to be capable of causing local, regional or global devastation.

No asteroid identified to date has ever made it out of the green zone by having a scale value greater than one. Several asteroids that had initial hazard scale values of one have been reclassified into category zero after additional orbit measurements showed that the chances of impact with the Earth became zero. All currently known asteroids have scale values of zero.

A Cosmic Shooting Gallery
Binzel, who has been developing the scale for five years, aims to give scientists a consistent way to communicate about the growing number of close-encounter asteroids being spotted. Increasingly sophisticated equipment, partially funded by NASA, such as the Lincoln Near Earth Asteroid Research (LINEAR) project at MIT's Lincoln Laboratory in Lexington, Mass., is being used to detect and track a growing number of the estimated 2,000 NEOs larger than about a half-mile (1 kilometer) in diameter.

The LINEAR project uses technology originally developed for the surveillance of Earth-orbiting satellites to detect and catalog NEOs. It has detected almost 250,000 asteroids to date, more than any other source. Of these, 228 are newly discovered NEOs.

While more asteroids than ever are being identified in the cosmic shooting gallery inhabited by our planet, Binzel points out that there is no increase in the number of asteroids out there -- only in our awareness of them. Because we know about more asteroids, there is an increasing awareness that many of them can make close passes by the Earth. "This doesn't mean that the Earth is in any greater danger," he said. "Fortunately, the odds favor that newly discovered objects will miss."

On the other hand, space-borne objects do hit the Earth. Tiny fragments as big as grains of sand bombard us constantly, and objects the size of a small car hit a few times a year. An asteroid bigger than a mile across might hit once every 100,000 to 1 million years. The planet bears scars from these encounters.

In the 1960s, Eugene Shoemaker of the U.S. Geological Survey proved that a big dent in the Arizona desert is a meteor crater. Most scientists believe that the dinosaurs were wiped out by a massive object 65 million years ago. The well-documented collision of the Shoemaker-Levy comet with Jupiter demonstrates that impacts are still a reality in the solar system today, but, Binzel points out, "No one has clearly documented deaths from a meteorite impact."

Judging Hazards
"If you tell a Californian that an earthquake registering one on the Richter scale was going to hit tomorrow, he would say, 'So what?'" Binzel said. "If you were talking about a six, that would be different."

So Binzel hopes it will be with asteroids. Nobody should lose sleep, he said, over an asteroid in the zero or one category, which accounts for the vast majority of them. He hopes to avoid sensationalism such as that surrounding the 1997 XF11 asteroid that led to the New York Post headline of March, 13, 1998, "Kiss your asteroid goodbye," or embarrassments such as astronomers' announcement -- and quick retraction -- regarding the 1999 AN10 asteroid's potential impact. AN10 is now known to be a sure miss, a zero on the Torino scale.

"Scientists haven't done a very good job of communicating to the public the relative danger of collision with an asteroid," said Binzel, who is a specialist on planetary astronomy. "Scientist-astronomers who are going to be confronted with this should have some means of clearly communicating about it so as to clearly inform but not confuse or unnecessarily alarm the public."

Once an asteroid is detected, scientists try to use information that shows a tiny section of its orbit to calculate where it will be in 10, 15 or 100 years. There is some uncertainty in this prediction because the orbit measurements are not perfect and the NEO may be altered by gravity if it passes close to the Earth or another planet, but "orbits generally behave like clockwork," Binzel said.

As more information is gathered about a particular asteroid, its placement on the scale can be adjusted accordingly, he points out. "It is hoped that in all cases the placement will go to zero.

"What I hope the scale will accomplish is to put in perspective whether an object merits concern," he said. "This is a case of a high-consequence but low-probability event. It's difficult in human nature to figure out what level of anxiety we should assign to an approaching asteroid."

  • Torino International Spaceguard Workshop
  • ACM Conference Site
  • Impact at NASA

    Current NEO Articles at SpaceDaily

  • Conference To Discuss Asteroid Danger
  • Asteroid Danger Scale Developed
  • Close Up Via Arecibo
  • Does Spaceguard Need a UN Office - Opinion at SpaceDaily
  • SpaceGuard Needs More Than Half Measures

    Related News Baskets at SpaceDaily

  • StarDust News - SpaceDaily Special Report
  • Deep Space One - SpaceDaily Special Report
  • NEAR News - SpaceDaily Special Report
  • Space Science: SpaceDaily Special Report

    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once

    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly

    paypal only

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.