. 24/7 Space News .
TIME AND SPACE
X-ray pulses create 'molecular black hole'
by Staff Writers
Hamburg, Germany (SPX) Jun 01, 2017


In this illustration, an ultra-intense X-ray laser pulse from SLAC's Linac Coherent Light Source knocks so many electrons out of a molecule's iodine atom (right) that the iodine starts pulling in electrons from the rest of the molecule (lower left), like an electromagnetic version of a black hole. Many of the stolen electrons are also knocked out by the laser pulse; then the molecule explodes. (DESY/Science Communication Lab)

Scientists have used an ultra-bright pulse of X-ray light to turn an atom in a molecule briefly into a sort of electromagnetic black hole. Unlike a black hole in space, the X-rayed atom does not draw in matter from its surroundings through the force of gravity, but electrons with its electrical charge - causing the molecule to explode within the tiniest fraction of a second. The study provides important information for analysing biomolecules using X-ray lasers, as the scientists report in the journal Nature.

The researchers used the free-electron laser LCLS at the SLAC National Accelerator Laboratory in the US to bath iodomethane (CH3I) molecules in intense X-ray light. The pulses reached intensities of 100 quadrillion kilowatts per square centimetre. The high-energy X-rays knocked 54 of the 62 electrons out of the molecule, creating a molecule carrying a positive charge 54 times the elementary charge.

"As far as we are aware, this is the highest level of ionisation that has ever been achieved using light," explains the co-author Robin Santra from the research team, who is a leading DESY scientist at the Center for Free-Electron Laser Science (CFEL).

This ionisation does not take place all at once, however. "The methyl group CH3 is in a sense blind to X-rays," says Santra, who is also a professor of physics at the University of Hamburg.

"The X-ray pulse initially strips the iodine atom of five or six of its electrons. The resulting strong positive charge means that the iodine atom then sucks electrons away from the methyl group, like a sort of atomic black hole." In fact, the force exerted on the electrons is considerably larger than that occurring around a typical astrophysical black hole of ten solar masses. "The gravitational field due to a real black hole of this type would be unable to exert a similarly large force on an electron, no matter how close you brought the electron to the black hole," says Santra.

The process happens so quickly that the electrons that are sucked in are then catapulted away by the same X-ray pulse. The result is a chain reaction in the course of which up to 54 of iodomethane's 62 electrons are torn away - all within less than a trillionth of a second. "This leads to an extremely high positive charge building up within the space of a ten-billionth of a metre. That rips the molecule apart," says co-author Daniel Rolles of DESY and Kansas State University.

Observing this ultra-fast dynamic process is highly significant to the analysis of complex molecules in so-called X-ray free-electron lasers (XFEL) such as the LCLS in California and the European XFEL, which is now going into service on the outskirts of Hamburg. These facilities produce extremely high-intensity X-rays, which can be used, among other things, to determine the spatial structure of complex molecules down to the level of individual atoms.

This structural information can be used by biologists, for example, to determine the precise mechanism by which biomolecules work. Other scientists have already shown that the molecules reveal their atomic structure before exploding. However, to study the dynamics of biomolecules, during photosynthesis for example, it is important to understand how X-rays affect the electrons.

In this study, iodomethane serves as a model system. "Iodomethane is a comparatively simple molecule for understanding the processes taking place when organic compounds are damaged by radiation," says co-author Artem Rudenko from Kansas State University. "If more neighbours than a single methyl group are present, even more electrons can be sucked in."

Santra's group at CFEL has for the first time managed to describe these ultra-high-speed dynamics in theoretical terms, too. This was made possible by a new computer program, the first of its kind in the world. "This is not only the first time that this experiment has been successfully carried out; we even have a numerical description of the process," points out co-author Sang-Kil Son from Santra's group, who was in charge of the team that developed the computer program. "The data are highly relevant to studies using free-electron lasers, because they show in detail what happens when radiation damage is produced."

Apart from DESY, Kansas State University and SLAC, Tohoku University in Japan, the Max Planck Institute for Nuclear Physics in Germany, the University of Science and Technology Beijing in China, the University of Arhus in Denmark, Germany's national metrology institute Physikalisch-Technische Bundesanstalt, the Max Planck Institute for Medical Research in Germany, the Argonne National Laboratory in the US, Sorbonne University in France, the Brookhaven National Laboratory in the US, the University of Chicago in the US, Northwestern University in the US and the University of Hamburg in Germany were also involved in the study.

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

Femtosecond response of polyatomic molecules to ultra-intense hard X-rays

TIME AND SPACE
The synchronized dance of skyrmion spins
Washington DC (SPX) May 31, 2017
In recent years, excitement has swirled around a type of quasi-particle called a skyrmion that arises as a collective behavior of a group of electrons. Because they're stable, only a few nanometers in size, and need just small electric currents to transport them, skyrmions hold potential as the basis for ultra-compact and energy-efficient information storage and processing devices in the future. ... read more

Related Links
Deutsches Elektronen-Synchrotron DESY
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Astronauts return after marathon ISS mission

From 2D to 3D, Space Station Microscope Gets an Upgrade

Studying Flame Behavior in Microgravity with a Solid "High-Five"

NASA honors Kennedy's space vision on 100th birthday

TIME AND SPACE
SpaceX blasts off cargo using recycled spaceship

Ariane 5 launches its heaviest telecom payload

Eutelsat signs new launch contract with Arianespace

Ariane 5 launches its first all-electric satellite

TIME AND SPACE
Halos discovered on Mars widen time frame for potential life

Curiosity Peels Back Layers on Ancient Martian Lake

Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

TIME AND SPACE
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

TIME AND SPACE
Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

TIME AND SPACE
When gold turns invisible

Mitsubishi Electric Completes New Satellite Component Production Facility

High pressure key to lighter, stronger metal alloys, Stanford scientists find

Northrop Grumman receives AESA radar contract

TIME AND SPACE
Giant Ringed Planet Likely Cause of Mysterious Eclipses

New Collaboration with Jodrell Bank Observatory for SETI

Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

Russia thinks microorganisms may be living outside the space station

TIME AND SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.