. 24/7 Space News .
ENERGY TECH
With this new universal wireless charger, compatibility won't be an issue
by Staff Writers
San Diego CA (SPX) Oct 15, 2015


The prototype of the dual frequency charger is a thin, rectangular box (12.5 centimeters + 8.9 centimeters) that contains two transmitter coils: an inner coil optimized to operate at a frequency of 200 kHz (orange), and an outer coil optimized to operate at 6.78 MHz (red). The prototype setup is pictured with the two receiver coils off the charging platform (top) and side by side on the platform (bottom). The transmitter coils and receiver coils are attached to green circuit boards. Image courtesy UC San Diego Jacobs School of Engineering. For a larger version of this image please go here.

A wireless charger that's compatible with different consumer electronics from different brands is one step closer to becoming a reality thanks to research by electrical engineers at the University of California, San Diego.

Researchers have developed a dual frequency wireless charging platform that could be used to charge multiple devices, such as smartphones, smartwatches, laptops and tablets, at the same time - regardless of which wireless standard, or frequency, each device supports.

"To our knowledge, this is the only multi-standard wireless power transmitter that's been shown to operate simultaneously at two different frequencies with high efficiency," said Patrick Mercier, a professor in the Department of Electrical and Computer Engineering at UC San Diego who led the study published in the journal IEEE Transactions on Power Electronics.

The new proof of concept study not only presents a "universal wireless charger" that can deliver power to multiple devices concurrently, it addresses an issue that afflicts existing wireless technology: incompatibility between the three competing wireless standards in today's market (known as Qi, Powermat and Rezence). Each wireless charger so far supports either the Qi, Powermat, or Rezence standard and will only work with devices that support the same standard.

As a result, wireless charging technology is ripe for a battle similar to the one that took place between Blu-ray and HD DVD. A battle between incompatible wireless standards could cripple the field until a winner emerges.

"To help avoid such a situation, we developed a wireless technology that is universal and supports all of these standards so it won't matter which standard your device supports," said Mercier, who is affiliated with the Center for Wireless Communications and is the co-director of the Center for Wearable Sensors, both at UC San Diego.

These three standards operate under different frequencies: Qi and Powermat operate at around 200 kHz while Rezence operates at 6.78 MHz. So herein lies the challenge. In order for a single charging device to support multiple standards, it needs to operate across these very different frequencies.

A wireless charger's ability to operate at a particular frequency depends on its transmitter coil. Wireless charging generally requires the charger's transmitter coil to send a high-power signal out to a compatible receiver coil in the device-to-be-charged. Existing wireless chargers are typically built with a transmitter coil that's optimized to work at one frequency. But as a consequence, the chargers are extremely inefficient at other frequencies.

To address this problem, Mercier and his team built a charging platform capable of simultaneously operating across the frequencies supported by all three wireless power standards. The prototype that they built is a thin, rectangular box (12.5 centimeters + 8.9 centimeters) that contains two transmitter coils: an inner coil optimized to operate at a frequency of 200 kHz, and an outer coil optimized to operate at 6.78 MHz.

One of the features of this design is that the coils lie in the same plane, allowing for a compact size. The platform is just big enough to fit two smartphones side by side. Another important feature of the prototype is a filtering circuit that the researchers designed to prevent the coils from interacting with each other and causing efficiency losses.

The researchers then tested the charging platform using two receiver coils (one optimized for 200 kHz operation and the other for 6.78 MHz), which served as models for two different smartphones. Engineers demonstrated that the charging platform was able to deliver power to both receiver coils at the same time at efficiencies ranging from 70 to 80 percent. The receiver coils were also able to receive power regardless of where they were placed on the charging platform.

"This means that multi-device and multi-standard wireless charging don't have to come at a significant efficiency penalty," said Mercier.

The researchers have filed patents on this technology and are looking for commercial partners to help bring the universal wireless charger into the market. Full paper: "Wireless Power Transfer with Concurrent 200 kHz and 6.78 MHz operation in a Single Transmitter Device," by Dukju Ahn and Patrick P. Mercier. The paper was published online Sept. 18, 2015 in the journal IEEE Transactions on Power Electronics.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - San Diego
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
New Oregon approach for 'nanohoops' could energize future devices
Eugene OR (SPX) Oct 13, 2015
When Ramesh Jasti began making tiny organic circular structures using carbon atoms, the idea was to improve carbon nanotubes being developed for use in electronics or optical devices. He quickly realized, however, that his technique might also roll solo. In a new paper, Jasti and five University of Oregon colleagues show that his nanohoops - known chemically as cycloparaphenylenes - can be ... read more


ENERGY TECH
Mound near lunar south pole formed by unique volcanic process

Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

ENERGY TECH
Opportunity parked for solar panels to charge up for winter

Pebbles on Mars likely traveled tens of miles down a riverbed

To save on weight, a detour to the moon is the best route to Mars

Opportunity working at 'Marathon Valley' before winter relocation

ENERGY TECH
Brands eye big bucks with 'Back to the Future' nostalgia

Russian Cosmonauts Taste 160 Meals Ahead of Space Station Expedition

NASA, Israel ink space cooperation agreement

Magnetic sail tech alternative to rocket-based space travel

ENERGY TECH
Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

ENERGY TECH
RSC Energia patented inflatable space module for ISS

Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

ENERGY TECH
China puts new communication satellite into orbit for HK company

ISRO to Launch 6 Singapore Satellites in December

ILS Proton Launches Turksat 4B

Both passengers for next Ariane 5 mission arrive in French Guiana

ENERGY TECH
Airbus DS ready to start testing exoplanet tracker CHEOPS

Hubble Telescope Spots Mysterious Space Objects

Exoplanet Anniversary: From Zero to Thousands in 20 Years

Mysterious ripples found racing through planet-forming disc

ENERGY TECH
'Molecular accordion' drives thermoelectric behavior in promising material

Is black phosphorous the next big thing in materials

Mode control for square microresonator lasers suitable for integration

Boeing showcases lightest metal ever









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.