Subscribe free to our newsletters via your
. 24/7 Space News .

Why sibling stars look alike: Early, fast mixing in star-birth clouds
by Staff Writers
Santa Cruz CA (SPX) Sep 02, 2014

Two 11-second movies (video 1, video 2) show a computational simulation of a collision of two converging streams of interstellar gas, leading to collapse and formation of a star cluster at the center. In both movies, the numbers rapidly increasing shows the passage of time in millions of years; left panel shows the density of interstellar gas (yellow and red are densest) and right panel shows red and blue "tracer dyes" added to watch how the gas mixes during the collapse. Face-on view (upper pair in the stills) shows the plane where the two gas streams meet while the edge-on view (lower pair in the stills) shows a cross section through the two streams. Circles outlined in black are stars; stars are shown as white in the left panel, and in the right panel their color reflects the amount of the two tracer dyes in each star. The simulation reveals that gas streams are thoroughly homogenized within a very short time of converging, well before stars begin forming. Image courtesy Mark Krumholz/University of California, Santa Cruz.

Stars are made mostly of hydrogen and helium, but they also contain trace amounts of other elements, such as carbon, oxygen, iron, and even more exotic substances. By carefully measuring the wavelengths (colors) of light coming from a star, astronomers can determine how abundant each of these trace elements is.

For any two stars at random, the abundances of their trace elements will slightly differ: one star may have a bit more iron, the other a bit more carbon, etc.

However, astronomers have known for more than a decade that any two stars within the same gravitationally bound star cluster always show the same abundances. "The pattern of abundances is like a DNA fingerprint, where all the members of a family share a common set of genes," said Mark Krumholz, associate professor of astronomy and astrophysics at University of California, Santa Cruz (UCSC).

Being able to measure this "fingerprint" is potentially very useful, because stellar families usually do not stay together. Most stars are born as members of star cluster, but over time they drift apart and migrate across the galaxy.

Their abundances, however, are set at birth. Thus, astronomers have long wondered if it might be possible to tell if two stars that are now on opposite sides of the galaxy were born billions of years ago from the same giant molecular cloud. In fact, they further wondered, might it be possible even to find our own Sun's long-lost siblings?

Just one big problem: "Although stars that are part of the same long-lived star cluster today are chemically identical, we had no good reason to think that such family resemblance would hold true of stars that were born together but then dispersed immediately," explained Krumholz.

"The underlying problem was that we didn't really know why stars are chemically homogeneous." For example, in a cloud where stars formed rapidly, might the cloud not have had enough time to homogenize thoroughly, thus giving rise to stars born at the same time but not uniform in chemical composition? "Without a real understanding of the physical mechanism that produces uniformity, everything was at best a speculation," he added.

Surprising violence
So Krumholz and his graduate student Yi Feng turned to UCSC's Hyades supercomputer to run a fluid dynamics simulation. They simulated two streams of interstellar gas coming together to form a cloud that, over a few million years, collapsed under its own gravity to make a cluster of stars.

"We added tracer dyes to the two streams in the simulations, which let us watch how the gas mixed together during this process," Krumholz recounted. They put red dye in one stream and blue dye in the other, but by the time the cloud started to collapse and form stars, everything was purple-and the resulting stars were purple as well.

"We found that, as the streams came together, they became extremely turbulent, and the turbulence very effectively mixed together the tracer dyes," he said.

"The simulation revealed exactly why stars that are born together end up having the same trace element abundances: as the cloud that forms them is assembled, it gets thoroughly mixed very fast," Krumholz said.

"This was actually a surprise: I didn't expect the turbulence to be as violent as it was, and so I didn't expect the mixing to be as rapid or efficient. I thought we'd get some blue stars and some red stars, instead of getting all purple stars."

In other runs of the simulation, Krumholz and Feng observed that even clouds that do not turn much of their gas into stars-as the Sun's parent cloud probably didn't-still produce stars with nearly-identical abundances.

"We've provided the missing physical explanation of how and why chemical mixing works, and shown convincingly that the chemical mixing process is very general and rapid even in an environment which did not yield a star cluster, like the one where the Sun must have formed," said Krumholz.

The finding puts the idea of chemical tagging on much firmer footing. "This is good news for prospects for finding the Sun's long-lost siblings," Krumholz stated.


Related Links
University of California High-Performance AstroComputing Center
Stellar Chemistry, The Universe And All Within It

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Astrophysicists Report Radioactive Cobalt in Supernova Explosion
Moscow, Russia (SPX) Sep 02, 2014
A group of astrophysicists, including researchers from MIPT, have detected the formation of radioactive cobalt during a supernova explosion, lending credence to a corresponding theory of supernova explosions. Details are given in the journal Nature, one of the most cited scientific publications in the world. The article's main author, Yevgeny Churazov (Space Research Institute of the Russi ... read more

China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

China to send orbiter to moon and back

Opportunity Flash-Memory Reformat Planned

Memory Reformat Planned for Opportunity Mars Rover

Scientist uncovers red planet's climate history in unique meteorite

A Salty, Martian Meteorite Offers Clues to Habitability

Aurora Season Has Started

Russian, US Scientists to Prepare Astronauts for Extreme Situations in Space

Russia's Space Geckos Die Due to Technical Glitch Two Days Before Landing

US to Stop Using Soyuz Spacecraft, Invest in Domestic Private Space Industry

Same-beam VLBI Tech monitors Chang'E-3 movement on moon

China Sends Remote-Sensing Satellite into Orbit

More Tasks for China's Moon Mission

China's Circumlunar Spacecraft Unmasked

Science and Departure Preps for Station Crew

3-D Printer Could Turn Space Station into 'Machine Shop'

Russia May Continue ISS Work Beyond 2020

NASA Awaits Boeing's Completion of Soyuz Replacement

Sea Launch Takes Proactive Steps to Address Manifest Gap

SpaceX rocket explodes during test flight

Russian Cosmonauts Carry Out Science-Oriented Spacewalk Outside ISS

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

Orion Rocks! Pebble-Size Particles May Jump-Start Planet Formation

Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

Experiments explain why some liquids are 'fragile' and others are 'strong'

The fluorescent fingerprint of plastics

Atoms to Product: Aiming to Make Nanoscale Benefits Life-sized

Argonne scientists pioneer strategy for creating new materials

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.