. 24/7 Space News .
EXO LIFE
Where Is the Habitable Zone for M-Dwarf Stars?
by Elizabeth Howell for Astrobiology Magazine
Moffett Field CA (SPX) Jun 23, 2016


Artist's impression of a M dwarf star surrounded by planets. Image courtesy NASA/JPL-Caltech.

While we know that yellow dwarf stars like our sun are capable of supporting life, there's another star type that is a prime hunting ground for potentially habitable exoplanets.

M-dwarf stars are extremely common in the Universe and a typical one is relatively small and dim, making it easy for astronomers to detect a passing planet. If orbiting planets huddle close enough to an M-dwarf, in theory they could fall within the habitable zone where surface liquid water, and thus life, is possible.

Yet, an M-dwarf's habitable zone is poorly understood. It is not clear how far away the planets need to be orbiting from the star for surface liquid water to be possible. Because planets in this range orbit so close to an M-dwarf they may be tidally locked, said Ravi Kumar Kopparapu, an assistant research scientist at the NASA Goddard Space Flight Center in Maryland.

"They're always facing the same side of the star, just like the Moon does around the Earth," he said.

This position could potentially stabilize the climate for life, but on the other hand, the side facing the star might be very hot while the side facing away is very cold.

Kopparapu said a better understanding of habitable zones around M-dwarfs needs to come quickly because of upcoming missions in exoplanet research. NASA's Transiting Exoplanet Survey Satellite (TESS) is scheduled to launch next year to observe more planets and to serve as a guidepost for NASA's James Webb Space Telescope in 2018.

James Webb can provide higher resolution data that can tell us about what kind of gases are present in the atmosphere of a planet orbiting an M-dwarf star. This data can bring out details such as a planet's temperature, revealing the potential for the right conditions to exist for life.

A paper based on Kopparapu's research, "The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models," was recently published in The Astrophysical Journal.

Refined climate model
Kopparapu previously came up with a one-dimensional climate model of habitable zones around all stars, including M-dwarfs. This model did not take into account tidal locking around the star, but instead found two types of habitability limits.

The first is a moist greenhouse limit, where a planet that is close enough to a star would have water vapor dominated atmosphere rendering the planet uninhabitable due to high temperatures. The second limit is a runaway greenhouse effect, where the energy from the star is so intense (higher than the energy absorbed in the moist greenhouse limit) that it causes oceans to evaporate.

The new model, explained in the most recent paper, simulates a water-rich planet (roughly Earth's size). Previous research using this same model found that the climate of such a planet would depend on atmospheric circulation, which in turn depends on the Coriolis force (created by the planet's rotation).

In slowly rotating planets near the inner edge of the habitable zone, the Coriolis force is weak, the clouds stay fairly stationary, and the planet has lower temperatures than predicted by one-dimensional models because the clouds reflect the light of the star. This results in the habitable zone being much closer to the star to take into account this cooling effect.

Kopparapu's team was able to reproduce those results, but there was one key difference.

"Our habitable zones are a little farther away from the star than what they get from their model because the planets get warmer faster," he said. "This means the width of the habitable zone around M-dwarf stars is not as wide as previously thought."

Kopparapu said his team took into account Kepler's third law of motion, which is a fundamental part of physics and astronomy. The law, simply put, says the time it takes a planet to orbit its star is roughly proportional to the size of its orbit. The older study assumed a constant orbital period of 60 days at the inner edge of the habitable zone, but the orbital and rotational period did not match what Kepler's law predicts.

More study is planned to refine the size of these habitable zones. Kopparapu has funding from NASA's Habitable Worlds Grant. His proposal will update our understanding of how water vapor can absorb incoming radiation from the star. This can influence the warmth of a planet and further reduce the width of the habitable zone.

Funding sources for the work include the NASA Astrobiology Institute's Virtual Planetary Laboratory, the NASA Planetary Atmospheres Program, the Center for Exoplanets and Habitable Worlds, the National Science Foundation and Penn State Astrobiology Research Center.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO LIFE
Prebiotic molecule detected in interstellar cloud
Pasadena CA (SPX) Jun 19, 2016
Chiral molecules - compounds that come in otherwise identical mirror image variations, like a pair of human hands - are crucial to life as we know it. Living things are selective about which "handedness" of a molecule they use or produce. For example, all living things exclusively use the right-handed form of the sugar ribose (the backbone of DNA), and grapes exclusively synthesize the lef ... read more


EXO LIFE
US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

EXO LIFE
Opportunity Wraps up Work on 'Wheel Scuff'

A little help from friends

CaSSIS Sends First Image of Mars

Rover Opportunity Wrapping up Study of Martian Valley

EXO LIFE
Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

EXO LIFE
China preparing for new era of space economy

China to send Chang'e-4 to south pole of moon's far-side

Experts Fear Chinese Space Station Could Crash Into Earth

Bolivia to pay back loan to China for Tupac Katari satellite

EXO LIFE
Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

EXO LIFE
SpaceX launches satellites but fails to recover rocket

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

Purdue experiment aboard Blue Origin suborbital rocket a success

Ariane 5 delivers its heaviest commercial payload

EXO LIFE
San Francisco State University astronomer helps discover giant planet orbiting 2 suns

Unexpected excess of giant planets in star cluster

Newborn Planet Discovered Around Young Star

A Young Super-Neptune Offers Clues to the Origin of Close-In Exoplanets

EXO LIFE
Fighting virtual reality sickness

New approach to microlasers

World's fastest supercomputer powered by Chinese chip technology

Serco gets $38 million missile radar contract









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.