Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



ROBO SPACE
What do Netflix, Google and planetary systems have in common?
by Staff Writers
Toronto, Canada (SPX) Dec 02, 2016


Artist's depiction of a collision between two planetary bodies. Image courtesy NASA/JPL-Caltech. For a larger version of this image please go here.

Machine learning is a powerful tool used for a variety of tasks in modern life, from fraud detection and sorting spam in Google, to making movie recommendations on Netflix. Now a team of researchers from the University of Toronto Scarborough have developed a novel approach in using it to determine whether planetary systems are stable or not.

"Machine learning offers a powerful way to tackle a problem in astrophysics, and that's predicting whether planetary systems are stable," says Dan Tamayo, lead author of the research and a postdoctoral fellow in the Centre for Planetary Science at U of T Scarborough.

Machine learning is a form of artificial intelligence that gives computers the ability to learn without having to be constantly programmed for a specific task. The benefit is that it can teach computers to learn and change when exposed to new data, not to mention it's also very efficient.

The method developed by Tamayo and his team is 1,000 times faster than traditional methods in predicting stability.

"In the past we've been hamstrung in trying to figure out whether planetary systems are stable by methods that couldn't handle the amount of data we were throwing at it," he says.

It's important to know whether planetary systems are stable or not because it can tell us a great deal about how these systems formed. It can also offer valuable new information about exoplanets that is not offered by current methods of observation.

There are several current methods of detecting exoplanets that provide information such as the size of the planet and its orbital period, but they may not provide the planet's mass or how elliptical their orbit is, which are all factors that affect stability, notes Tamayo.

The method developed by Tamayo and his team is the result of a series of workshops at U of T Scarborough covering how machine learning could help tackle specific scientific problems. The research is currently published online in the Astrophysical Journal Letters.

"What's encouraging is that our findings tell us that investing weeks of computation to train machine learning models is worth it because not only is this tool accurate, it also works much faster," he adds.

It may also come in handy when analysing data from NASA's Transiting Exoplanet Survey Satellite (TESS) set to launch next year. The two-year mission will focus on discovering new exoplanets by focusing on the brightest stars near our solar system.

"It could be a useful tool because predicting stability would allow us to learn more about the system, from the upper limits of mass to the eccentricities of these planets," says Tamayo.

"It could be a very useful tool in better understanding those systems."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Toronto
All about the robots on Earth and beyond!






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
From Monterey Bay to Europa
Pasadena CA (JPL) Dec 01, 2016
If you think operating a robot in space is hard, try doing it in the ocean. Saltwater can corrode your robot and block its radio signals. Kelp forests can tangle it up, and you might not get it back. Sharks will even try to take bites out of its wings. The ocean is basically a big obstacle course of robot death. Despite this, robotic submersibles have become critical tools for ocean resear ... read more


ROBO SPACE
Orbital ATK Ends 2016 with Three Successful Cargo Resupply Missions to ISS

Space freighter burns up after launch to to ISS: Russia

Space Food Bars Will Keep Orion Weight Off and Crew Weight On

Russian Space Sector Overcomes Failures

ROBO SPACE
Russia to Launch Fewer Spacecraft in 2016 Than US, China for First Time

Soyuz-U Carrier Rocket Installed to Baikonur Launching Pad

The Vega launcher is complete for next week's Arianespace mission with Gokturk-1

XCOR Partners With Immortal Data To Enhance And Commercialize Shipslog Data Acquisition System

ROBO SPACE
CaSSIS Sends First Images from Mars Orbit

NASA Radio on Europe's New Mars Orbiter Aces Relay Test

First views of Mars show potential for ESA's new orbiter

ExoMars space programme needs an extra 400 million euros

ROBO SPACE
China launches 4th data relay satellite

Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

ROBO SPACE
ESA looks at how to catch a space entrepreneur

LeoSat and Globalsat Group Sign Strategic Worldwide Agreement

Thales and SENER to jointly supply optical payloads for space missions

Citizens' space debate: the main findings and the future

ROBO SPACE
Metamaterials open up entirely new possibilities in optics

Scientists unveil first 'water-wave laser'

Creating new physical properties in materials

Researchers explore 2-D materials to devices faster, smaller and efficient

ROBO SPACE
Biologists watch speciation in a laboratory flask

Life before oxygen

Timing the shadow of a potentially habitable extrasolar planet

Fijian ants began farming 3 million years ago

ROBO SPACE
New Perspective on How Pluto's "Icy Heart" Came to Be

New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement