Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Warming ocean water undercuts Antarctic ice shelves
by Staff Writers
Boulder CO (SPX) Mar 17, 2016

This is a satellite image of Antarctica.

"Upside-down rivers" of warm ocean water threaten the stability of floating ice shelves in Antarctica, according to a new study led by researchers at the University of Colorado Boulder's National Snow and Ice Data Center published in Nature Geoscience. The study highlights how parts of Antarctica's ice sheet may be weakening due to contact with warm ocean water.

"We found that warm ocean water is carving these 'upside-down rivers,' or basal channels, into the undersides of ice shelves all around the Antarctic continent. In at least some cases these channels weaken the ice shelves, making them more vulnerable to disintegration," said Karen Alley, a Ph.D. student in CU-Boulder's Department of Geological Sciences and lead author of an analysis published in Nature Geoscience.

Ice shelves are thick floating plates of ice that have flowed off the Antarctic continent and spread out onto the ocean. As ice shelves flow out to sea, they push against islands, peninsulas, and bedrock bumps known as "pinning points." Contact with these features slows the flow of grounded ice off the continent.

While ice shelves take thousands of years to grow, previous work has shown that they can disintegrate in a matter of weeks. If more ice shelves disintegrate in the future, loss of contact with pinning points will allow ice to flow more rapidly into the ocean, increasing the rate of sea level rise.

"Ice shelves are really vulnerable parts of the ice sheet, because climate change hits them from above and below," said NSIDC scientist and study co-author Ted Scambos. "They are really important in braking the ice flow to the ocean."

The features form as buoyant plumes of warm and fresh water rise and flow along the underside of an ice shelf, carving channels much like upside-down rivers. The channels can be tens of miles long, and up to 800 feet "deep."

When a channel is carved into the base of an ice shelf, the top of the ice shelf sags, leaving a visible depression, or "wrinkle", in the relatively smooth ice surface. Alley and her colleagues mapped the locations of these wrinkles all around the Antarctic continent using satellite imagery, as well as radar data that images the channels through the ice, mapping the shape of the ice-ocean boundary.

The team also used satellite laser altimetry, which measures the height of an ice shelf surface with high accuracy, to document how quickly some of the channels were growing. The data show that growing channels on the rapidly melting Getz Ice Shelf in West Antarctica can bore into the ice shelf base at rates of approximately 10 meters (33 feet) each year.

The mapping shows that basal channels have a tendency to form along the edges of islands and peninsulas, which are already weak areas on ice shelves. The team observed two locations where ice shelves are fracturing along basal channels, clear evidence that basal channel presence can weaken ice shelves to the point of breaking in vulnerable areas.

Ice shelves are thick floating plates of ice that have flowed off the continent and out onto the ocean. As ice shelves flow out to sea, they push against islands, peninsulas, and bedrock bumps known as "pinning points".

Contact with these features slows the ice flowing off the continent. If ice shelves disintegrate in the future, loss of contact with pinning points will allow ice to flow more rapidly into the ocean, increasing rates of sea level rise.

While no ice shelves have completely disintegrated due to carving by basal channels, the study points to the need for more observation and study of the features, said co-author... "It's feasible that increasing ocean temperatures around Antarctica could continue to erode ice shelves from below."

The study, "Impacts of warm water on Antarctic ice shelf stability through basal channel formation," was led by University of Colorado Boulder Ph.D. student Karen Alley, who worked with coauthors Ted Scambos of NSIDC and Matthew Siegfried and Helen Fricker of Scripps Institute of Oceanography. Their work was funded in part by NASA and the U.S. Geological Survey.


Related Links
University of Colorado at Boulder
Beyond the Ice Age

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Australian icebreaker home for repairs after Antarctica grounding
Sydney (AFP) March 12, 2016
Australia's flagship icebreaker has arrived home for repairs after running aground in Antarctica, as the government thanked international teams from China, Japan and the United States for helping to evacuate the expeditioners on board. The Aurora Australis broke its mooring in a raging blizzard and ran aground at Horseshoe Harbour close to Australia's Mawson station on February 24, stranding ... read more

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

Mission to Mars brings Russia and Europe together

NASA targets May 2018 launch of Mars InSight mission

NASA Announces Winning Concepts to Further its Journey to Mars

Close comet flyby threw Mars' magnetic field into chaos

Greece tourism insists on sunny outlook amid refugee crisis

Planetary Science Institute funded for expanded education public outreach effort

NASA tests inflatable heat shield technology for deep space missions

First tomatoes, peas harvested from mock Martian farm

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

Sticky, stony and sizzling science launching to space station

International Space Station's '1-year crew' returns to Earth

Scott Kelly and Mikhail Kornienko return to Earth after One-Year Mission

Paragon wins NASA ISS water processor development contract

Assembly of Russia's Soyuz Rocket With Earth-Sensing Satellite Completed

Ariane 5 launch contributes to Ariane 6 development

SpaceX launches SES-9 satellite to GEO; but booster landing fails

US Space Company in Talks With India to Launch Satellite

Sharpest view ever of dusty disc around aging star

Evidence found for unstable heavy element at solar system formation

Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Super-clear synapses at super resolutions

Eco-friendly tech could transform European aluminum industry by 2050

Ruby red improves in the microwave oven

Metamaterial separation proposed for chemical, biomolecular uses

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.