Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Visualizing how radiation bombardment boosts superconductivity
by Staff Writers
Upton NY (SPX) May 29, 2015


High-energy gold ions impact the crystal surface from above at the sites indicated schematically by dashed circles. Measurement of the strength of superconductivity in this same field of view, as shown on the lower panel, reveals how the impact sites are the regions where the superconductivity is also annihilated. In additional studies, the scientists discovered that it is in these same regions that the strongest pinning of quantized vortices occurs, followed at higher magnetic fields by pinning at the single atom crystal damage sites. Pinning the vortices allows high current superconductivity to flow unimpeded through the rest of the sample. Image courtesy Brookhaven National Laboratory. For a larger version of this image please go here.

Sometimes a little damage can do a lot of good - at least in the case of iron-based high-temperature superconductors. Bombarding these materials with high-energy heavy ions introduces nanometer-scale damage tracks that can enhance the materials' ability to carry high current with no energy loss - and without lowering the critical operating temperature.

Such high-current, high-temperature superconductors could one day find application in zero-energy-loss power transmission lines or energy-generating turbines. But before that can happen, scientists would like to understand quantitatively and in detail how the damage helps--and use that knowledge to strategically engineer superconductors with the best characteristics for a given application.

In a paper published May 22, 2015, in Science Advances, researchers from the U.S. Department of Energy's (DOE) Brookhaven and Argonne national laboratories describe atomic-level "flyovers" of the pockmarked landscape of an iron-based superconductor after bombardment with heavy ion radiation. The surface-scanning images show how certain types of damage can pin potentially disruptive magnetic vortices in place, preventing them from interfering with superconductivity.

The work is a product of the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center established at Brookhaven in partnership with Argonne and the University of Illinois to foster collaboration and maximize the impact of this research.

"This study opens a new way forward for designing and understanding high-current, high-performing superconductors," said study co-author J.C. Seamus Davis, a physicist at Brookhaven Lab and Cornell University.

"We demonstrated a procedure whereby you can irradiate a sample with heavy ions, visualize what the ions do to the crystal at the atomic scale, and simultaneously see what happens to the superconductivity in precisely the same field of view."

Argonne physicist Wai-Kwong Kwok led the effort on heavy ion bombardment. "Heavy ions such as gold can create nearly continuous or discontinuous column shaped damage tracks penetrating through the crystal. As the very high-energy ions traverse the material, they melt the crystal at the atomic scale and destroy the crystal structure over a diameter of a few nanometers. It's important to understand the details of how these atomic-scale defects affect local electronic properties and the macroscopic current carrying capacity of the bulk material," he said.

The scientists were particularly interested in how the nanoscale defects interact with microscopic magnetic vortices that form when iron-based superconductors are placed in a strong magnetic field - the type that would be present in turbines and other energy applications.

"These quantum vortices are like eddies in a river moving across or counter to the direction of flow," Davis said. "They are the enemy of superconductivity. You can't prevent them from forming, but scientists as long ago as the 1970s found you can sometimes prevent them from moving around by shooting some high-energy ions into the material to form atomic-scale damage tracks that trap the vortices."

But random bombardment is, literally, hit-or-miss. Scientists developing materials for energy applications would like to take a more strategic approach by developing a quantitative and predictive theory for how to engineer these materials.

"If a company comes to us and says we are developing these superconductors and we want them to have this current at a certain temperature in this type of magnetic field, we'd like to be able to tell them exactly what type of defects to introduce," Kwok said. To do that they needed a way to map out the defects, map out the superconductivity, and map out the locations of the vortices - and a quantitative theoretical model that describes how those variables relate to one another and the material's bulk superconductivity.

A precision spectroscopic-imaging scanning tunneling microscope (SI-STM) developed by Davis is the first tool that can map out those three characteristics on the same material. Under Davis' guidance, Brookhaven Lab postdoctoral fellow Freek Massee (now at University Paris-Sud in France) and Cornell University graduate student Peter Sprau - the two lead co-authors on the paper - used the instrument's fine electron-tunneling tip to scan over the material's surface, imaging the atomic structure of the landscape below and the properties of its electrons, atom by atom.

The precision allows the scientists to scan the same atoms repeatedly under different external conditions - such as changes in temperature and ramped up magnetic fields - to study the formation, movement, and effects of quantum vortices.

Their atomic-scale imaging studies reveal that vortex pinning - the ability to keep those disruptive eddies in place - depends on the shape of the high-energy ion damage tracks (specifically whether they are point-like or elongated), and also on a form of "collateral damage" discovered by the researchers far from the primary route traversed by each ion.

Collaborating theorists at the University of Illinois are now using the experimental results to develop a descriptive framework the scientists can use to predict and test new approaches for materials design.

"These studies will really help us solve at which temperature which type of defects will be best for carrying a particular current," Kwok said. "The ability to achieve critical current by design is one of the ultimate goals of the Center for Emergent Superconductivity."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brookhaven National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
New class of swelling magnets have the potential to energize the world
Philadelphia, PA (SPX) May 28, 2015
A new class of magnets that expand their volume when placed in a magnetic field and generate negligible amounts of wasteful heat during energy harvesting, has been discovered by researchers at Temple University and the University of Maryland. The researchers, Harsh Deep Chopra, professor and chair of mechanical engineering at Temple, and Manfred Wuttig, professor of materials science and e ... read more


ENERGY TECH
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

ENERGY TECH
United Arab Emirates Hopes to Reach Mars by2021

NASA Begins Testing Next Mars Lander Insight

The Supreme Council of Parachute Experts

Science Drives NASA's Journey to Mars

ENERGY TECH
LightSail reestablishes communication with mission control

US Lawmakers Pass Bill for Space Mining in the Future

NASA pushes flying saucer parachute test to Thursday

NASA's Exploration Plans Include Living Off the Land

ENERGY TECH
China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

ENERGY TECH
NASA Delays Approval on International Space Station Projects

Space age mice are thin-skinned

Space Station remodelling

NASA Begins Major Reconfiguration of International Space Station

ENERGY TECH
Recent Proton loss to push up launch costs warns manufacturer

Air Force Certifies SpaceX for National Security Space Missions

SpaceX cleared for US military launches

Ariane 5's second launch of 2015

ENERGY TECH
Astronomers Discover a Young Solar System Around a Nearby Star

Circular orbits identified for small exoplanets

Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

ENERGY TECH
MUOS-3 communications satellite completes in-orbit testing

Patent for Navy small space debris tracker granted

3D printers get Ugandan amputees back on their feet

Saving money and the environment with 3-D printing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.